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physics and non physics subjects we had. Many other people made me enjoy my
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Chapter 1

Introduction

Ever since quantum mechanics was shown to be successful in explaining the way

atoms work in the beginning of last century the limits of its validity have been

investigated. Schrödinger’s famous thought experiment consists of a microscopic

two-state system, for which quantum mechanics is supposed to be valid, linked

to a macroscopic system (for example a cat), which is supposed to behave clas-

sically, so that the fate of the cat (‘alive’ or ‘dead’) is linked to the state of the

quantum two state system (|0〉 or |1〉). The conclusion that a superposition of the

quantum system would lead to a superposition of the cat’s fate was the beginning

of numerous discussions about the interpretation of quantum mechanics.

It was experimentally confirmed that indeed quantum mechanics has some

remarkable features which are unknown in classical mechanics. Long distance

entanglement between photons was demonstrated in EPR [1] experiments, and

tests of Bell’s inequalities have shown that quantum correlations are larger than

would be possible in classical systems [2, 3]. This peculiar behaviour leads to the

question how the classical world emerges from the microscopic quantum world.

Numerous experiments were proposed to investigate this issue. The use of super-

conducting devices was proposed to test the idea that one can make superposi-

tions of macroscopic flux states [4]. Some other remarkable experiments include

an interference experiment in which the path-information can be erased after the

photon has passed the double slit [5], and an experiment showing interference

patterns not using electrons or photons but using large molecules [6].

The fact that the amount of information needed to describe a quantum sys-

tem grows exponential with the size of the system led to the idea that quantum

systems might be suitable to perform certain tasks more efficiently then would

be possible in classical systems. Quantum cryptography allows for setting up a

secure communication link between two parties: Any third party trying to de-

termine the states of a sequence of bits of information would disturb the state

1



2 Chapter 1. Introduction

of the system since the basis in which the information is encoded is not known

beforehand, and an eavesdropper would have to guess the basis used by the send-

ing party. This disturbance can then be detected by the communicating parties,

and they would know if a third party tried to gain information from the bits

that have been sent. Quantum cryptography has been shown to work over many

kilometres using photons, and is one of the first applications of quantum infor-

mation processing which people are starting to use in practice. The discovery of

actual quantum algorithms gave rise to the idea that people might one day build

a quantum computer to perform certain calculations with an exponential increase

in efficiency compared to a classical computer. Shor’s factorizing algorithm can

be used to factorize a large number in its primes in a number of steps that is a

polynomial function of the size of the problem whereas it would take an exponen-

tial number of steps to perform the same task classically. The first experiments

showing the principle of this algorithm were performed in NMR experiments [7].

Also teleportation of quantum information has been achieved in NMR systems

[8]. However, the NMR system is hard to scale to a large number of qubits.

In the last decade many proposals have been put forward to building a scalable

system of coupled qubits. Proposals include using trapped ions, in which con-

ditional two qubit quantum operations have been shown recently [9, 10]. Other

candidates for building large designable quantum systems are solid state devices

like spin or charge of electrons in quantum dots [12], nuclear spins in silicon [11],

and devices using superconducting Josephson junctions. The advantage of solid

state devices is that conventional techniques can be used to fabricate these sys-

tems as they have most in common with the way contemporary computers are

constructed. The disadvantage however, may be the large coupling to unwanted

degrees of freedom which is always there since these systems consist of many

atoms.

The advantages and disadvantages of all systems will become more clear once

people will try to couple many quantum two level systems. For a small number of

quantum systems promising results have been achieved, and experimental tests of

entanglement between spatially separated devices and test of Bell’s inequalities

in solid state systems are likely to be performed in a few years time.

Coherent oscillations in a Josephson junction system were first demonstrated

in a cooper pair box. Other systems in which coherent operations are achieved

[13, 14, 15, 16, 17, 18] are a single large Josephson junction biased in such a way

that only a few levels are present in the potential well, as well as a charge/phase

system, and the Josephson persistent current qubit discussed in this thesis.

Conditional gate operations have been performed in a set of coupled Cooper-

pair boxes [19] and coupling of superconducting flux systems has been achieved
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[20, 21].

This thesis is about the Josephson persistent current qubit, which consists of

a superconducting ring intersected by three Josephson junctions. Coherence in

a single Josephson persistent current qubit was first shown a few years ago. The

main focus now is on improving coherence of the single system as well as finding

ways to created a network of these systems to show entanglement between spa-

tial separated qubits, and to perform quantum algorithms in Josephson junction

systems. Focus on improving the coherence of a single system are on reducing

flux noise using gradiometer designs and on reducing the unwanted effects of the

measurement and control circuitry on the quantum system. In addition tech-

nological progress is needed to fabricate high-quality reproducible junctions to

decrease critical current noise in the junctions.

Outline of this thesis

This thesis describes measurements on single and coupled Josephson persistent

current qubits. The basic principles of this system as well as the measurement

device are presented in chapter 2. In chapter 3, coupling of two qubits via the flux

degree of freedom is discussed. Measurements showing coupling in a two-qubit

system with mainly geometrical coupling are presented as well as measurements

on a two-qubit system where coupling was achieved using a shared Josephson

junction. In chapter 4, measurements of coherent Rabi oscillations between the

states of a coupled qubit system flipping either qubit of the system are presented,

as wel as conditional spectroscopy measurements. Spectroscopy measurements

from the ground state and the first excited state to higher states reveal the en-

ergy spectrum of the coupled qubit system. In chapter 5 we model the double

layer structures which are created since we use shadow evaporation for fabri-

cation of our Josephson junctions. Precise knowledge of the phase distribution

in these layers allows them to be used as large junctions. Finally, in chapter 6

spectroscopy measurements on a gradiometer-type persistent current qubit show

trapped fluxoid bias can be used to correctly bias the qubit.
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Chapter 2

The Josephson persistent current qubit

The Josephson persistent current qubit consists of a superconducting loop

intersected by three Josephson junctions. For an applied flux bias of half a flux

quantum the potential energy forms a double well potential, making this system

act as a quantum two-level system. A SQUID can be used to read out the flux

signal produced by the Josephson persistent current qubit.

7



8 Chapter 2Josephson persistent current qubit

2.1 Introduction

The use of superconducting structures for investigating macroscopic quantum

behaviour started with the possibility to fabricate underdamped Josephson junc-

tions in the end of the seventies [1]. Since then superconducting Josephson sys-

tems have been proposed to investigate macroscopic super positions of flux states

in such systems [2]. Interest in these designable superconducting quantum sys-

tems was boosted when the concept of quantum computation became known.

Since then other superconducting systems were proposed and coherent quantum

dynamics in many of these systems was achieved [3, 4, 5, 6, 7, 8]. The main focus

in many of these experiments now lies in improving the coherence properties of

these system, and to find way to couple a number of them to show two qubit

operations and to perform test on Bell’s inequalities in solid state systems. In

this chapter basic properties of the Josephson persistent current qubit will be

discussed [9]. The Josephson persistent current qubit is a system that consists of

a loop intersected with three Josephson junctions. When a flux bias of Φ = 1
2
Φ0

is applied the Josephson energy of the junctions form a double well potential

making the system act as a two state quantum system, usable as a quantum bit.

For investigating the properties of single and entangled quantum systems one

needs to find a measurement method suitable for the specific system under con-

sideration. The properties of this measurement system are of importance since

any measurement will influence the quantum system. A weak measurement will

only give partial information, and will only influence the quantum state slightly.

A strong measurement allows for determining the state with one measurement.

Such a measurement will force the system to be in the state measured after the

measurement is performed. For superconducting flux qubits one can measure the

phase of the system by detecting the flux produced by the qubit using a SQUID

(Superconducting Quantum Interference Device) magnetometer coupled to the

system via the mutual inductance. One can either measure the Josephson induc-

tance of the SQUID by putting it in a resonance circuit [10, 11, 12] and detecting

the resonance frequency, or measure the switching current of the SQUID. The

advantage of the first method is that no switching to the finite voltage state of

the SQUID takes place, but the second method is simpler to implement. In this

chapter first the general properties of this qubit system like the energy spectrum

will be shown. The states of the system will be treated as an artificial spin and

the Hamiltonian will be written using Pauli spin matrices. For the measurements

in this thesis a SQUID is used to determine the state of the qubit. In section 2.3

some junction and SQUID basics will be given, and the escape rates for thermal

excitation and quantum tunnelling will be compared. After this in section 2.4
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a b

Figure 2.1: The Josephson persistent current qubit consists of a superconducting loop
with three junctions. One junction is smaller by a factor of α ≈ 0.6−0.8. (b) A SQUID
surrounding the qubit is used for measuring the flux signal produced by the qubit.

the pulsed measurement scheme will be studied. Finally decoherence properties

of the qubit due to the measurement and control circuitry will be discussed.

2.2 The Josephson persistent current qubit

The Josephson persistent current qubit [9] consists of a superconducting alu-

minium ring intersected with three Josephson junctions (see figure 2.1).

The energy of the system is given by the potential energy V , which is a

function of the phases γi, and the kinetic energy T , a function of γ̇i, given by

VJos = EJ [2 + α− cos(γ1) − cos(γ2) − αcos(−γ1 − γ2 − 2π
Φ

Φ0
)] (2.1)

T =
1

2
C

Φo

2π
γ̇1

2 +
1

2
C

Φo

2π
γ̇2

2 +
1

2
αC

Φo

2π
(γ̇1 + γ̇2)

2 (2.2)

where γ1 and γ2 are the phases over the Josephson junctions. Ip is the per-

sistent current flowing in the loop. The eigen energies of the system are shown

in figure 2.2 as a function of the applied flux Φ. Around a flux bias of Φ = 1
2
Φ0

the two classical energies cross. The system has two stable states, with opposite

circulating currents, given by the slopes of the levels with respect to flux. The

tunnel coupling ∆ depends on the barrier between the two local minima and can

be numerically calculated. For EJ

Ec
∼ 60 and EJ ∼ 150GHz the tunnelling is of

the order of a few Giga Hertz. A smaller α means the barrier between the wells
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Φ Φ
0,

Figure 2.2: Energy levels of a Josephson persistent current qubit. Around Φ = 1
2Φ0

the system can be described by the two classical current states corresponding to the
minima in the potential energy and a tunneling term between the wells.

is lower so tunnelling is increased (see figure 2.3). Tunnel coupling between these

two states creates an anti crossing between the classical energy levels, visible in

the centre of the energy diagram in figure 2.2, and can be measured using spec-

troscopy measurements [13]. Around f = 1
2

the classical persistent currents are

independent of the applied flux. Away from half a flux quantum through the loop

(in figure 2.2 at f = 0.47 and f = 0.53) the second level changes slope indicat-

ing the current associated with it changes direction; The double well potential is

tilted so far that two levels can be present in the lowest well before there is any

occupation of the highest well.

In figure 2.4 the potential landscape along the γ1 = γ2 direction is plotted.

The system has two stable states at the bottom of the energy wells with positive

and negative phase γ and thus with positive and negative circulating persistent

currents Ip = ±Icsinγ in the loop [9]. The position of the energy minima are,
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Figure 2.3: The tunnel coupling ∆ between the wells is mainly determined by the
barrier between the local minima which depends strongly on α, the ratio of the smallest
junction and the larger junctions. The potential landscape is plotted for α = 0.7,
0.8 and 0.9 with EJ

Ec
= 60 and EJ = 150GHz. The tunnelcoupling ∆ is plotted for

EJ = 150GHz and EJ
Ec

= 40 (dashed), EJ
Ec

= 60 (solid) and EJ
Ec

= 80 (dotted). The
tunnel coupling is increased for small α since the barrier is lowered. For lower charging
energy Ec the tunneling is reduced.

near half a flux quantum, independent of the applied flux. Therefore the persis-

tent current Ip is independent of the flux for a given well. The classical energy

associated with the energy minima of the double well potential is

E0,1 = ±Ip(Φ − 1

2
Φ0) (2.3)

The system can be described as a two-state system or pseudo spin [9] in terms of

the Pauli spin matrices σz and σx as

HΦ = − ε

2
σz +

∆

2
σx =

( − ε
2

∆
2

∆
2

ε
2

)
(2.4)

where ε = 2Ip(Φ − 1
2
Φ0) is the classical energy bias of the qubit. ∆ is the

tunnel coupling between the wells. This gives eigen energies of the system as

E0,1 = ∓
√

( ε
2
)2 + (∆

2
)2 giving a level splitting E1 − E0 of ν =

√
ε2 + ∆2 as

plotted in figure 2.4b. The dashed lines are the classical energies of the system.
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Figure 2.4: The double well potential can be tilted by applying a flux to the qubit loop.
Around a flux bias of Φ = 1

2Φ0 the system behaves as a two state system. The classical
energy of the two states is given by E = ±Ip(Φ − 1

2Φ0)

The Hamiltonian can be transformed by rotating the matrix according to UHU∗

where U contains the normalised eigenvectors of the Hamiltonian in the flux basis

Heig =

( −1
2

√
ε2 + ∆2 0

0 1
2

√
ε2 + ∆2

)
(2.5)

Excitation of the system using an oscillating flux

When a cosine like σx perturbation is applied in resonance with the difference in

energy between the levels the quantum state ψ = α |0〉+β |1〉, the system performs

coherent Rabi oscillations between the eigenstates of the system [15]. In the case

of the Josephson persistent current qubit the system can be excited by applying

a microwave frequency magnetic flux δΦmw = |Φmw| sin(ωt) to the system, where

|Φmw| is the amplitude and ω is the frequency of the signal. This gives a change

in the energy bias of the system according to εmw = 2Ip(δΦmw). This radiation is

applied in the σz direction in the flux-basis. The part of the microwave radiation

that ends up in the σx direction is calculated by transforming the micro wave

Hamiltonian Hmw = − εmw

2
σz = −ΦmwIpσz using UHmwU

∗ where U is the matrix

rotating the unperturbed Hamiltonian to its diagonal form (equation 2.5). This
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gives for the microwave Hamiltonian in the eigen basis of the system

Heig =

(
− ε√

ε2+∆2

εmw

2
∆√

ε2+∆2

εmw

2
∆√

ε2+∆2

εmw

2
ε√

ε2+∆2

εmw

2

)
(2.6)

The part of the radiation coupling as σx to our qubit is then given by ∆√
ε2+∆2 ΦmwIp.

Spectroscopy measurements on a Josephson persistent current qubit

Measurements on the Josephson persistent current qubit are performed at low

temperatures (T ∼ 15mK) in a dilution refrigerator. Signals from room temper-

ature down to the sample in the cryostat are filtered using copper powder filters

to filter out any high frequency noise in the current bias lines or the voltage

measurement lines. Microwave attenuators are placed at the various temperature

stages to attenuate thermal noise from higher temperatures. The substrate of

5mm by 5mm on which the Josephson persistent current qubit and the SQUID

are fabricated is placed inside a cavity with connections for the dc measurement

signal and for the microwave signal. To reduce substrate heating and to reduce

influence of quasi particles produced after each switching event measurements are

performed at a repetition rate of ∼ 1kHz.

The qubit signal is picked up by a SQUID whose critical current depends on

the total flux through the SQUID loop. A typical measurement consist of fixing

the applied microwave frequency and power and then sweeping the flux around

the region Φ = 1
2
Φ0 (see figure 2.5). The ’step’ at Φ = 1

2
Φ0 occurs since the ground

state energy of the system changes slope indicating a change in persistent current

of the qubit from clockwise to counter-clockwise. At those values of the external

field where the applied microwave radiation is resonant with the qubit energy

splitting resonance peaks are visible meaning the system is partially excited to

the higher state through the continuous microwave radiation and an incoherent

mixture is formed.

Coherent Rabi oscillations between qubit states

When the flux bias is fixed at resonance and microwaves are applied the system

coherently performs Rabi oscillations as a function of the duration of the applied

micro wave pulse, as shown in figure 2.6. Oscillations flipping one qubit in a

coupled qubit system are shown. In this example the oscillations shown have a

decay time of the order of 60ns.
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Figure 2.5: Measured qubit signal for applied microwave frequency f = 14.34Ghz for
various values of the external magnetic field. The characteristic step around Φ = 1

2Φ0

indicates the qubit ground state changes character as we move through the degeneracy
point. The peak on the left side and the dip on the right indicate the applied microwaves
are resonant with the energy levels of the qubit and the system is incoherently pumped
from the ground state to the first excited state.

2.3 The SQUID detector

A SQUID can be used as a magnetometer either by detecting its switching current

which depends on the flux through the loop, or by using the Josephson induc-

tance in a resonant circuit and detecting the resonance frequency. The Josephson

potential of a junction gives a cosine like potential in which the phase is at rest in

one of the energy minima. By applying a bias current Ibias through the junction

the potential landscape formed by the Josephson energy is tilted [23, 24, 16].

When a bias current Ibias > Ic, where Ic is the critical current of the junction,

is applied the potential landscape no longer forms energy minima. Around this

point the phase will start to roll and the junction will leave the zero-voltage

state and switch to the finite voltage state. Escape will occur before this point is

reached due to thermal excitation or quantum tunnelling [1, 16] at a point called

the switching current Isw < Ic. Since this switching is a statistical process there
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Figure 2.6: Rabi oscillations flipping a single qubit in a coupled qubit system. The
system oscillates coherently between the ground state and the first excited state with a
level distance of f = 9.4GHz.

is a spread in switching currents as is visible in figure 2.7). The current through

the junction is slowly ramped to a finite value many times after each other and

each time the switching current is detected to build the histogram.

Both thermal escape and quantum tunnelling escape will be discussed here

briefly but in experiments performed the SQUIDs used are in the quantum tun-

nelling regime. The escape rate of either process is determined by the plasma

frequency and the barrier height. The plasma frequency at zero bias current is

given by

ωp,0 =

√
2πIc
Φ0C

(2.7)

where Ic is the critical current of the junction, and C is the capacitance of the

junction. The plasma frequency decreases at finite bias currents due to the less

steep potential according to ωp = ωp,0

√
1 − i2 with i = Ib

Ic
. The potential energy

as a function of the applied current is given by [1, 16]

∆U =
IcΦ0

2π
(2
√

1 − i2 − 2arccos(i)) (2.8)

Thermal escape is given by

Γescape = ωpe
− ∆U

kBT (2.9)
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Figure 2.7: Measured switching current distribution. By repeatedly ramping the cur-
rent at a rate of ∼ 1µA/ms and detecting the moment the SQUID switches to the finite
voltage state one can build a histogram.

Here T is the temperature and ∆U is the barrier height to overcome at a given

bias current. For quantum tunnelling this rate is [1]

Γescape = aqωpe
− 36

5
∆U
�ωp (2.10)

where aq =
√

120π 36
5

∆U
�ωp

. By comparing these we find the transition between

quantum tunnelling and thermal escape at 5
36

�ωp ≈ kBT .

The SQUID as a magnetometer

The potential energy of a SQUID as seen in figure 2.8 is given by the sum of the

Josephson energies of the junctions [23]. The maximum current that can be send

through the SQUID without switching to the finite voltage state is depending on

the flux through the SQUID loop. The SQUID thus behaves as a flux-tunable

junction with a critical current given by

Ic,sq = 2Ic,j |cos(πf)| (2.11)
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�1

��

Icir

Figure 2.8: Schematic layout of a SQUID. The maximum current through the junc-
tions is modulated with the flux through the SQUID loop, making it useful a a magne-
tometer.

since the flux modulates the barrier height in the φext direction. It is this

dependence of the barrier height on the flux which makes it useful as a magne-

tometer. The measured switching current of a typical SQUID versus magnetic

field is seen in figure 2.9 where the cosine like behaviour of the critical current

as a function of the flux is visible. The SQUID is designed to be operated some-

where on the slope of the curve. By making the coupling to the measurement

system high the qubit state can be determined with one or a few measurements

but then also decoherence due to coupling to the measurement circuit is high.

On the other side a low coupling means every single measurement only reveals

part of the information of the state under consideration and averaging over many

experiments is needed to determine its state for sure. The important factor is

the relative change in escape rate of the SQUID induced by the qubit.

2.4 Pulsed measurement scheme.

For measuring the state of a single or coupled qubit system a bias current pulse

(figure 2.10) is send through the SQUID after manipulation of the qubit is per-

formed. Measurement has to be performed before the system relaxes to the
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Figure 2.9: Measured switching current of a SQUID versus flux applied to the SQUID
loop. Each point is an average switching current of 100 switching events. The depen-
dence of the switching current on the flux is used to determine the state of the qubit.

ground state and all information is lost. This means the measurement has to be

performed within tens of nanoseconds to a few microseconds after the operations.

This relaxation time depends on the details of the specific system parameters.

Depending on the flux in the SQUID loop the switching probability will change

and the state of the qubit can be determined. Typical measurement pulse times

τmeas used are of the order of 20ns − 2000ns. To be able to detect whether the

SQUID has switched during the measurement pulse a tail to the measurement

pulse is added to keep the system in the finite voltage state for a longer time.

The escape rate for the quantum tunnelling case is plotted in figure 2.11 for

various values of the capacitance seen by the external degree of freedom. The

sensitivity of the SQUID is determined by the change of the escape rate Γ. For
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Figure 2.10: First qubit operations are performed by applying micro wave pulses to
the qubit. Then a current pulse of time τmeas is applied to the SQUID. To measure if
the SQUID switched to the finite voltage state a tail in the applied measurement pulse
is added to keep the SQUID in the finite voltage state. The switching probability of the
SQUID Psw is a measure for the flux produced by the qubit and thus for the qubit state.

C = 25 · 10−14, C = 0.25 · 10−12 and C = 2.5 · 10−12 the escape rates are plotted.

Clearly visible is the dependence on the capacitance: A higher capacitance gives

a steeper slope and thus makes the measurement more sensitive. For a constant

bias current pulse of time τmeas the probability that the SQUID has switched

after a bias current pulse is given by

Pswitch = 1 − e−Γτmeas (2.12)

where Γ is the escape rate for a given bias current Ibias as given in equation 2.10

and τmeas is the length of the applied pulse. For a pulse length of τmeas = 500ns

and a critical current of Ic = 1µA the switching probability can be seen in

figure 2.12. Also the sensitivity of the escape to a change in the relative bias

current to the SQUID i = Ibias

Ic
is plotted. The measurement is most sensitive

when the pulse height is tuned around this maximum in slope of P versus i. In

figure 2.13 the measured switching probability of a capacitively shunted SQUID

versus applied bias current is plotted. The on-chip capacitor has a value of

C ∼ 1.25pF . The theoretical line plotted has a capacitance of C ∼ 0.25pF . The

escape chance for various capacitances is plotted in figure 2.14. The measured

switching probability curve thus indicates that the effective mass associated with

the phase of the system is only partially influenced by the external capacitance.

This is attributed to the inductance of the line connecting the SQUID to the

external capacitance. For high frequencies this inductance is a large impedance
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Figure 2.11: Escaperate Γesc as a function of the bias current through the SQUID
i = Ibias

Ic
. Different plots are for capacitances C = 25 · 10−14, C = 0.25 · 10−12 and

C = 2.5 · 10−12. For a pulsed measurement the pulse height is set such that the escape
chance is ∼ 50% for a given pulselength τmeas.

so the capacitor only partially feels the voltage fluctuation over the SQUID. The

effective mass is much more then the estimated junction capacitance which is of

the order of C ∼ 5fF , indicating the external capacitance still partially influences

the switching.

2.5 Decoherence due to the circuitry

The relaxation and dephasing rates of a quantum system are determined by

coupling to its environment. The system can lose energy to (emission) or gain

energy from (absorption) the environment at a typical time scale called the mixing

time T1. Also, noise from the environment can cause the energy difference ∆E =

E1−E0 between the levels of the quantum system to fluctuate causing dephasing

at a typical time scale T2. Many sources of decoherence can be present, such
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Figure 2.12: Top: Escape chance P versus the bias current for a measurement pulse
of τ = 500ns and a critical current of Ic = 1µA. Bottom: Derivative of the excape
chance P with respect to the relative applied bias current i. For the most sensitive
readout the SQUIDis operated at the maximum of this curve.

as flux or charge noise. Here the coupling to the environment via the on-chip

electrical circuitry will be considered. This environment can be characterized by

the resistors, capacitors and inductances seen by the qubit. The spectral density

of the voltage noise caused by a resistive environment depends on the real part

of the impedance of the environment. This spectral density can be described by

the following expression [22]:

SV (ω) =
2�(Z(ω))�ω

1 − e−�ω/kBT
(2.13)

The spectral density is defined at positive and negative frequencies to take

into account the fact that the environment can absorb (ω > 0) and emit (ω < 0)

energy (figure 2.15) from and to the qubit.
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Figure 2.13: Measured switching probability of a C-shunted SQUID as a function of
i = Ib

Ic
. The width of the transition region from no switching (on the left) to always

switching (on the right) is determined by the capacitance and the critical current. The
dashed line is the theoretical switching probability for Ic = 1.45µA and C = 0.25pF .
The value of the capacitance indicates only a part of the external capacitance counts
for the mass of the phase ball in the Josephson potential.

For a temperature of T = 0 only the positive frequencies are present in the

spectrum indicating only absorption of energy by the environment can take place,

while at high temperatures both rates are equal leading to an equal distribution

of the population between the levels.

Relaxation of a two level system

The absorption rate and emission rate for the qubit absorbing or emitting energy

from and to the environment are described by [22]
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Figure 2.14: Theoretical switching curves for C = 25fF , C = 0.25pF and C = 2.5pF .
The first value is approximately the expected junction capacitance, and the last value
is the capacitance value of the external shunt capacitor. The data is fitted with a
capacitance of C = 0.25pF .

Γ↓,↑ =
1

�2
SE(±ω) =

A2

�2
SV (±ω) (2.14)

where SE(±ω) is the spectral density of the energy fluctuation seen by the qubit

as σx. The factor A determines how the voltage fluctuations SV are translated

in σx fluctuations in the Hamiltonian of the two level system. The steady state

situation can be obtained by looking at the rates at which energy is absorbed or

emitted. Mixing of the system to the steady state situation is determined by both

adsorption and emission at the frequency of the energy difference of the transition.

Any excursion from the equilibrium situation of the polarisation P = p0 − p1,

with p0 the ground state population and p1 the excited state population, will

decrease according to

δP (t) = δP (0)e−(Γ↓+Γ↑)t (2.15)
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Figure 2.15: The qubit can undergo transition from the ground state to the excited
state and visa versa by absorbing or emitting a photon from the environment.

so the mixing rate Γr is given by [17, 18, 19, 20, 21]

Γr ≡ 1

T1
=
A2

�2
(SV (−ω) + SV (+ω)) (2.16)

This rate is the rate at which the polarisation of the system P = p0 − p1 will go

to the steady state situation P0, and can for the spectrum of equation 2.13 be

written as

SV,tot = SV (−ω) + SV (ω) = 2�(Z(ω))�ω coth(
�ω

2kBT
) (2.17)

Dephasing

Noise from the environment can cause dephasing given by [17, 18]

Γφ =
Γr

2
+
ε2

ν2
α2π

2kBT

�
(2.18)

where α is the limit for low frequencies of the spectral density of the noise .

Relaxation and dephasing due to SQUID and microwave circuitry

The factor A in equation 2.16 is determined by the coupling of the noise of the

environment to the energy levels of the quantum system. The electrical environ-

ment seen by the Josephson persistent current qubit consists of a microwave line

used to apply a varying magnetic field to the qubit and a C-shunted SQUID used

for measuring the qubit signal, see figure 2.16. Voltage fluctuations are caused

by the effective resistances Rmw and Rl in the microwave line and the SQUID.

Any voltage δV over the SQUID translates to current through the SQUID

which in turn translates to a change in circulating current in the SQUID. These
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Figure 2.16: The measurement circuit connected to the DC SQUID surrounding the
qubit and the circuit connected to the microwave guides for applying a high frequency
oscillating flux to the qubit can all cause relaxation and dephasing of the quantum
system of interest. The electrical environment can be designed in such a way that the
effect of noise causing relaxation and dephasing is minimized.

fluctuations cause flux fluctuations in the qubit causing relaxation. The voltage

noise is given by the impedance as seen by the SQUID given by the SQUID

inductance in parallel with the shunt capacitor and the resistor Rl. Msq,qb deter-

mines the flux coupling from the qubit to the SQUID loop and takes into account

how the circulating current in the squid translates to flux in the qubit. There

can also be direct coupling of the SQUID bias line to the qubit, Mbias,qb. This

contribution can be reduced by using a symmetric configuration of the SQUID

with respect to the qubit. For a Josephson persistent current qubit coupled to

a SQUID or to microwave leads with various types of environments (C-shunt,

RC-shunt and microwave leads) this relaxation is discussed in [17, 18, 21]. The

resulting relaxation rate due to the SQUID is given by

Γr,sq =
1

�

∆2

ε2 + ∆2

1

ω
I2
pM

2
sq,qb tan2(πf)

(
2π2Isq

Φ0

)2

�(Z(ω))coth(
hν

2kBT
) (2.19)

where C and Rl are the capacitance and resistance values (figure 2.16). M is the

mutual inductance from the SQUID to the qubit and Ip is the persistent current

in the qubit. The microwave circuit gives a relaxation rates of

Γr,mw =
∆2/�2

�ω

(MmwIp)
2

Rmw
coth(

�ν

2kBT
) (2.20)

with Mmw,qb the inductive coupling from the microwave line to the qubit, and

Rmw = 50Ω the impedance seen in the microwave line.

The relaxation times for typical system parameters are plotted in figure 2.17.

In designing the qubit-SQUID system one should take into account that the

operating point of the system should not coincide with the SQUID resonance

(around f = 2.5GHz in the figure) since the influence of fluctuations in the

environment is enhanced. Assumed is an asymmetry in the SQUID junctions of
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Figure 2.17: Relaxation rates for a typical qubit ( Ip = 300nA, ∆ = 1GHz ) due to
coupling to the SQUID measurement circuit (solid line) and the microwave line (dashed
line).

10 percent and circuit parameters are C = 20pF , Rl = 100Ω and Ic,sq = 2500nA.

The SQUID is operated at a point where the critical current is reduced to 1500nA.

Coupling from the SQUID to the qubit is M = 8pH and coupling from the

microwave lead to the qubit is M = 0.1pH .

The dephasing rates due to the SQUID and microwave environment are given

by [18]

Γφ,sq ≈ (2π)2

�2
(
MsqIp

Φ0
)2I2

sqtan
2(f)

L2
J

R
kBT (2.21)

Γφ,mw ≈ 4

�2

(MmwIp)
2

Rmw
kBT (2.22)

2.6 Summary

The Josephson persistent current qubit can be used as an artificial two level

system near a frustration of half a flux quantum through the qubit loop. A
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SQUID can be used to pick up the flux signal produced by the quantum system

under consideration. The design of the measurement circuit is of importance for

the sensitivity of the SQUID as a measurement device for the Josephson persistent

current qubit. Experimental tests indicate there is a limit to the effectiveness of

an external shunt capacitor as far as the sensitivity of the SQUID is concerned.

Also, in designing the on-chip circuitry one has to take care that the noise from

resistors in the measurement circuit, the microwave circuit or flux bias lines does

not cause severe decoherence of the system.
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Chapter 3

Coupled Josephson Persistent Current

Qubits

The principles of coupling Josephson persistent current qubits are discussed and

measurements showing the qubit-qubit coupling of two qubits with geometrical

coupling and of two qubits with coupling via kinetic inductance are presented.

29
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3.1 Introduction

Two coupled Josephson persistent current qubits are studied for investigating

the principles of quantum computation as well as performing measurements on

entangled systems. Coupling of superconducting systems has been achieved in

Cooper-pair boxes and in Josephson persistent current qubits [1, 2, 3, 4]. We

want qubits to be coupled in a controlled way, and ultimately a tunable coupling

is needed [5]. The goal of this work is to show that qubits can be coupled and that

the full four dimensional Hilbert space of this system can be exploited. In order

to do this, we must first understand the mechanisms leading to the coupling, and

investigate the energy levels and transition probabilities of a coupled quantum

system. Josephson persistent current qubits can be coupled inductively. In this

chapter the energy levels of inductively coupled qubits are mapped out using

spectroscopy measurements. In section 3.2 the origin and magnitude of flux

coupling is discussed. Another way to achieve this coupling between two flux

qubits is via their phase degree of freedom using a shared line (and its kinetic

inductance) or a shared Josephson junction (and its Josephson inductance) for the

current in the qubits to flow through. This will be treated in section 3.3, where

these mechanisms will be linked to the simpler case where there are only fluxes

involved. It will become clear that all these extra phase coupling mechanisms

enter the equations in a similar way, and that these terms can all be summed

up to form one simple expression. In section 3.5 experimental results on coupled

qubits are presented, and coupling of two Josephson persistent current qubits

will be shown in two samples using either geometrical coupling (sample A) or

coupling via a shared junction (sample B).

3.2 Qubit-qubit coupling via the flux

Josephson persistent current qubits can be coupled via their flux by putting them

next to each other. Depending on the flux state of one qubit the flux bias of the

other is influenced and visa versa. Here the coupling energy J involved in going

from the uncoupled to the coupled situation is deduced for the configuration

shown in figure 3.1.

The energy of the coupled qubit system

To calculate the coupling one has to derive the total potential energy of the

coupled system. The potential energy can be divided into two parts. First there

is the energy in the Josephson junctions EJ due to the phase bias. When there is
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Figure 3.1: Two Josephson persistent current qubits can be coupled via their flux.
The phases over each qubit are influenced via flux quantisation by the flux produced by
the other qubit. Also energy is stored in the mutual magnetic field between the qubits
depending on the fluxes adding or subtracting from each other.

coupling the qubits influence each others phase bias and thus change the energy.

Second, there is the potential energy stored in the mutual magnetic field of the

qubits Emagn. Near f = 1
2

the qubits are loops with a persistent current of

Ip = ±Ip,0. Since each loop produces a flux in the other loop there is a magnetic

energy involved. From this the difference in potential energy J = ∆EJ +∆Emagn

between the case of two uncoupled and two coupled qubits will be derived. It

will be shown that, near f = 1
2
, the ratio between the energy terms is given by

2EJ = −Emagn.

The Josephson energy in the junctions of each individual qubit.

The Josephson part of the energy of the system as shown in figure 3.1 is given by

VJos =
∑
i∈1,2

EJ,i[2 + α− cos(γ1,i) − cos(γ2,i) − αcos(γ3,i)] (3.1)

with EJ,i the Josephson energy of the large junctions of the i’th qubit and α

the ratio of the small junction compared to the large junctions. Applying flux

quantization for each loop (i ∈ [1, 2]), gives

γ1,i + γ2,i + γ3,i + 2π
Φi,tot

Φ0
= 0 (3.2)

Here the total flux in one qubit is the sum of the externally applied flux Φi,ext,

the self produced flux Φi,self = LiIp,i and the flux produced in qubit i by qubit
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j, Φi,j = MIp,j , where Li are the geometrical self inductances of the loops, and

M is the geometrical mutual inductance between the loops. This gives

γ1,i + γ2,i + γ3,i + 2π
Φi,ext

Φ0

+
2π

Φ0

LiIp,i − 2π

Φ0

MgeoIp,j = 0 (3.3)

By using (3.3) in (3.1) we have

VJos =
∑
i∈1,2

EJ,1,i[2+α−cos(γ1,i)−cos(γ2,i)−αcos(−γ1,i−γ2,i−2π
Φi,ext + LiIp,i −MIp,j

Φ0
)]

(3.4)

The qubits are coupled because the phase over the junctions in one qubit is

influenced by the current in the other due to flux quantisation. L and M are

defined positive and the sign of the coupling is taken into account in the flux

quantization rules. Near half a flux quantum the energy values of the minima

(associated with a persistent current of ±Ip,0) of the double well potentials are

linear in the applied flux Φi,tot according to Ip,i = −∂EJos,i

∂Φtot
and thus also for the

dependence on the flux created in one qubit by the other, Ip,i = −∂EJos,i

∂Φi,j
. For

both qubits biased at Φi,tot < 0.5Φ0 the current associated with the ground state

opposes the applied flux in that loop, so that it enhances the flux in the other

loop for the configuration of figure 3.1. This means that in the linear regime

around f = 1/2 the system acquires an extra Josephson energy MIp,1Ip,2 when

the coupling is switched on for each qubit giving for both qubits

∆EJos = 2MIp,1Ip,2 (3.5)

This energy is positive if both persistent currents are of the same sign, indi-

cating that there is an energy advantage for the qubits being anti parallel, and a

disadvantage for the parallel configuration.

The energy stored in the magnetic field

The second contribution to the energy associated with the coupling of two qubits

is the energy stored in their common magnetic field. This contribution comes

from the fact that there is energy involved in changing the configuration of current

carrying loops. This energy is given by W =
∑

i∈1,2
1
2
IiΦj [6]. When coupling two

qubits together in this way the energy in the field is decreased when the qubits are

in the same state, because for currents in the same direction they decrease their

mutual magnetic field and thus the total energy stored in the field is less. This
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energy stored in the field means there is an energy contribution to the system

when two qubits are coupled of

∆Emagn = −MIp,1Ip,2 (3.6)

giving an advantage for the qubits being in the same state for the configuration

in figure 3.1.

The Qubit-Qubit coupling energy J

The qubit-qubit coupling energy J is the energy associated with changing the

mutual inductance M from 0 to a finite value. When M = 0 all coupling terms

in the total potential energy disappear and the added energies of two single

uncoupled qubits are obtained. The total coupling is given by J = ∆EJos +

∆Emagn, where the first part (eq. 3.5) is for parallel fluxes a positive contribution

and the second part (eq. 3.6) a two times smaller negative contribution. The ratio

between the terms is given by EJ = −2Emagn. The total qubit-qubit coupling

energy is thus given by

J = MIp,1Ip,2 (3.7)

For the geometry of figure 3.1 it favours the qubits to be anti parallel by an

energy of 2J compared to the parallel case.

3.3 Qubit-qubit coupling via a junction or a shared

line

In this section the scenario where the loops will be coupled via an extra junction

or via the kinetic inductance of a shared line is discussed. It will be shown that

this kind of coupling has the same effect as the flux coupling discussed in section

3.2. For these coupling mechanisms the sign and magnitude of the coupling will

be calculated.

Using the Josephson inductance of a junction for coupling

Instead of the mutual inductance a large Josephson junction with critical current

Ic,cj can be used to couple the qubits as in figure 3.2. The Josephson inductance

LJ = Φ0

2πIc
determines the coupling strength.

Similar to equation (3.3) flux quantization can be rewritten to include the

phase over this large junction. For persistent currents in the qubit much smaller
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Ip,1 Ip,2

MJos 
cj

	1,1

	3,1

	2,1

	3,2

	2,2

	1,2

Figure 3.2: Schematic overview of coupling two qubits via a shared junction. Both
qubits send a current through this coupling junction and thus a phase φcj is imposed
over it. This phase will influence flux quantisation of both qubits just as in the case
with a magnetic field. Also there will be energy stored in the coupling junction.

then the critical current of the coupling junction the phase over this junction is

given by

φcj = arcsin(
Ip,1 − Ip,2

Ic,cj
) ≈ Ip,1 − Ip,2

Ic,cj
(3.8)

The Josephson energy in this junction is

E = EJ(1 − cos(φcj)) ≈ 1

2

Φ0

2π

(Ip,1 − Ip,2)
2

Ic,cj
(3.9)

By using the Josephson inductance MJos = Φ0

2πIc,cj
[7, 8], this phase and energy

can be rewritten as

φcj =
2π

Φ0

MJos(Ip,1 − Ip,2) (3.10)

and

E =
1

2
MJos(Ip,1 − Ip,2)

2 (3.11)

The first relation can be used in the part of the coupling concerned with fluxoid

quantisation so we get :

γ1,i + γ2,i + γ3,i + 2π
Φi,ext

Φ0

+ 2π
MJos(Ip,i − Ip,j)

Φ0

= 0 (3.12)



3.3 Qubit-qubit coupling via a junction or a shared line 35

Ip,1 Ip,2

Mkin 
kin

	1,1

	3,1

	2,1

	3,2

	2,2

	1,2

Figure 3.3: Schematic overview of coupling two qubits via a shared line. Again the
current through this common line will impose an extra phase difference on the other
qubit, and there will be energy paid or gained when changing the state of the qubits.

The second relation ( 3.11 ) gives for the energy in the medium :

E =
1

2
MJosI

2
p,1 +

1

2
MJosI

2
p,2 −MJosIp,1Ip,2 (3.13)

In these terms MJos has the same role as either the self inductance Lgeo or as

the mutual inductance Mgeo as in section (3.2) and one can go through similar

arguments to arrive at an energy advantage for anti parallel qubits as compared

to parallel qubit alignment of 2J where

Jjunc = MJosIp,1Ip,2 (3.14)

The form of this coupling is the same as equation 3.7 with the mutual geomet-

rical inductance replaced by the Josephson inductance of the shared junction..

Coupling via a shared line

In the case of a shared line (3.3) there is a coupling of the two systems via the

kinetic inductance of the line, just as is the case with the kinetic inductance of

a shared Josephson junction. This represents the kinetic energy that is stored in

the current carriers in the line [7, 8, 9]. This energy is given by

E =
1

2
LkinI

2
line (3.15)
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where the kinetic inductance is Lkin = Λ l
σ
. With the current in the shared line

given by Iline = Ip,1 − Ip,2 this energy is written as

E =
1

2
LkinI

2
line =

1

2
LkinI

2
p,1 +

1

2
LkinI

2
p,2 − LkinIp,1Ip,2 (3.16)

This is the energy stored in the line. Again we can distinguish terms which behave

as the self inductance in a single qubit, and a part which behaves like the mutual

inductance. We see that this energy contribution to the total J is −LkinIp1Ip2.

There is a phase associated with the current flowing through this line just as with

any inductance, influencing again the flux quantization of the qubits. The phase

along a current carrying line with a certain kinetic inductance Lkin is given by

∆θkin = LkinI (3.17)

This phase adds up to the phases due to the flux as in equation (3.3) so again

there is an energy associated with this of 2LkinIp1Ip2 . By now adding the energy

contributions we end up with an extra coupling J due to the kinetic inductance

of

Jkin = +LkinIp1Ip2 (3.18)

This makes the kinetic inductance behave the same as the mutual inductance or

the linearised Josephson inductance.

Estimations for realistic systems

In realistic systems all these contributions add to the total coupling. Here the

coupling strength of each of the previous terms will be estimated so we can

calculate the total mutual coupling M = Mgeo + Mkin + MJos and thus J for

any design. For a reasonable coupling of J = 1.5GHz with persistent currents of

Ip = 300nA we need a total mutual inductance of M ≈ 10pH .

Geometric induction

For the typical size of qubits of 5 by 5 um the geometrical mutual inductance

Mgeo is only ∼ 1 − 2pH if the lines are not shared and the qubits are positioned

250 nm apart, giving a coupling strength J of only a few hundred MHz. This is

not so easy to make much larger (especially when the qubits are physically apart)

while keeping the qubit area small. However, this contribution is always present.

Kinetic induction
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The kinetic inductance of a line is proportional to its length and inversely

proportional to its cross section. In the limit of a dirty one-dimensional super-

conductor Lkin is linked to the normal state resistance Rn as

Lkin ≈ Φ0

π2

eRn

∆
(3.19)

For typical lines of 50nm height and 150nm wide we find a value of 2pH/µm,

making it feasible to get to the wanted coupling of 10pH . The line width can be

made smaller to increase the coupling. This allows the kinetic inductance to be

designed within a large range.

Josephson induction

The coupling via a Josephson junction also allows for great flexibility in de-

signing the coupling value between the qubits since one can tune its critical cur-

rent to high precision. For a value of LJ = 10pH a critical current of Ic,cj = 40µA

is needed. One way to create such a large junction is to make use of the double

layer structure of our lines which are unavoidably present when using shadow

evaporation for fabricating the junctions (chapter 5). A line of 5 micrometer by

1 micrometer gives a critical current of ∼ 40µA in the transverse direction. One

has to make sure that the connections to this coupling junction are correct so

that all currents will cross the junction. Also , for large long junctions there

will be the kinetic contribution and current will redistribute along the line (see

chapter 5).

3.4 The energy spectrum of the coupled qubit

system

In order to determine the energy spectrum of this system near a frustration of

Φ = 1/2Φ0 we use a two-level approximation to the full Hamiltonian for a single

qubit. The two level system will be written using the Pauli spin matrix notation.

Here this approximation will be given, and energy levels and transition elements

between the levels will be calculated. Also some comments will be made on the

validity of this 4-level approximation.

Hamiltonian of the coupled qubit system

Near Φ = 0.5Φ0 the qubit energy levels can be approximated by the levels of

a two state system. Around this point the classical persistent currents (Ip =

−∂E
∂Φ

= ±Ip0) are independent of the applied magnetic field, as can be seen in

figure 3.4. The system can be described as
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Φ Φ
0,

Figure 3.4: Energy levels of a single qubit for EJ/Ec = 40 and Ip = 300nA. One can
see that too far out the third level start to influence the second level.

H =

( −ε/2 ∆/2

∆/2 ε/2

)
(3.20)

in the basis of the |↓〉 and |↑〉 state, similar to the case of a spin in a magnetic

field. The energy bias ε = 2Ip(Φ − 1
2
Φ0) of the system depends on the applied

flux. ∆ is the tunnel coupling between the states. For the specific case of figure

3.4 more then 0.025Φ0 away from the degeneracy point the third level crosses

the second level. Here the simple two level approximation breaks down because

Ip will not be independent of the applied flux any more and there will not be a

fixed energy J accounting for the coupling between the qubits. In order for the

two level picture to be valid f needs to be close enough to Φ = 1
2
Φ0 so that the

third level is far away. Also in the case of a large anti ferromagnetic coupling this

demand is even stricter since the shift of 2J due to the coupling should also not

bring us outside this region. Each of the qubits can be described as a pseudo-

spin by using the Pauli spin matrices. The Hamiltonian of two uncoupled qubits

looks like H = H1 ⊗ I2 + H2 ⊗ I1 where H1 and H2 represent the individual

qubits. I1 and I2 represent the identity matrices in the Hilbert space of qubit 1

and 2 respectively. This will give the following matrix in the basis of the classical

persistent current states as pseudo-spin states , |↓↓〉 , |↓↑〉 , |↑↓〉 and |↑↑〉:
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H =




− ε1+ε2
2

∆2

2
∆1

2
0

∆2

2
− ε1−ε2

2
0 ∆1

2
∆1

2
0 ε1−ε2

2
∆2

2

0 ∆1

2
∆2

2
ε1+ε2

2


 (3.21)

where the energies are ε1 = −2Ip,1(Φ1 − 1
2
Φ0) and ε2 = −2Ip,2(Φ2 − 1

2
Φ0) respec-

tively, and ∆1 and ∆2 are the tunnel couplings for both qubits. In this two level

picture of the qubits the coupling is σzσz coupling in the basis of the flux states

since the coupling described in section 3.2 couples the flux or phase degrees of

freedom of two (or more) qubits. This coupling can be added to the Hamiltonian

via a term Jσz
1σ

z
2 where J is given by J = MIp,1Ip,2. The Hamiltonian now looks

like

H =




− ε1+ε2
2

+ J ∆2

2
∆1

2
0

∆2

2
− ε1−ε2

2
− J 0 ∆1

2
∆1

2
0 ε1−ε2

2
− J ∆2

2

0 ∆1

2
∆2

2
ε1+ε2

2
+ J


 (3.22)

By diagonalising this matrix as a function of the applied flux bias we can deter-

mine the energy spectrum of this four level system. Asymmetries are taken into

account via the different ∆i the differences in εi due to a difference in surface or

a difference in the persistent currents Ip,i of the qubits.

Transition elements

In order to calculate the transition elements one needs to look at the way an

applied oscillating magnetic field Φi,mw couples via the energy bias εi to the σx

component of the Hamiltonian in the eigenbasis of the system. Two realistic

microwave-line configurations are given in figure 3.5. In the case of identical

qubits for the case as in figure 3.5a both qubits ’see’ the radiation with the same

phase. This means the amplitude of this oscillating flux signal is added to the

flux bias Φi,j in the 4 level approximation according to

Φi,tot = Φi + Φi,mw (3.23)

Analogous to the single qubit case (chapter 2), in order to calculate the effective

power exciting the system to one of the higher levels, we should find the am-

plitude of the oscillating signal in the basis of the eigenstates. This is done by

rotating the Hamiltonian matrix which includes the driving to the eigen basis of
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mw antenna mw antenna

s

g

s

g

g
a. b.

Figure 3.5: Two possible configurations for applying microwave radiation to the qubits,
s denotes the signal wire and g is the ground wire. a) Both qubits receive the same
oscillating flux signal. b) The phase of the oscillating flux seen by the qubits is π out
of phase.

the unperturbed system according to UHmwU
∗. Here U is the matrix containing

the eigenvectors of the unperturbed Hamiltonian so it satisfies UHU∗ = I. The

resulting Hamiltonian including the perturbation term for identical qubits looks

like

Hmw =




− ε1,mw+ε2,mw

2
0 0 0

0 − ε1,mw−ε2,mw

2
0 0

0 0
ε1,mw−ε2,mw

2
0

0 0 0
ε1,mw+ε2,mw

2


 (3.24)

Here εi,mw are the amplitudes of the energy oscillation due to the oscillating flux

used to excite the system, εi,mw = 2Ip,iΦi,mw with Φi,mw the oscillating fluxes

through qubit 1 and 2 respectively. For the configuration as in figure (3.5a) this

means that for identical qubits the terms with (ε1,mw − ε2,mw ) will be zero, and

for the configuration as in figure (3.5b) (ε1,mw + ε2,mw) will be zero.

Energy level diagram and transition rates for identical qubits

The energy levels and transition elements can be calculated numerically and are

shown for J = 1GHz and ∆ = 2GHz in figure (3.6). In the symmetric case the

second level is independent of the flux applied to the system. Far away from the

degeneracy point at a flux bias of Φ = Φ0

2
the states are the classical states of
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Figure 3.6: a) Energy levels for identical qubits. Away from degeneracy the qubits
follow the straight lines indicating the energy is given by the sum of the classical qubit
energies and the coupling energy J . For the first and second excited states the qubits
are in anti parallel configuration giving an energy advantage of 2J compared to the
parallel case. b) Transitions are more likely near the degeneracy point since applied
flux radiation will couple in the σx direction more efficient there.
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the flux qubits, with the second and third state corresponding to superpositions

of the |↓↑〉 and |↑↓〉 states.

When extrapolating the energy difference between the ground state and the

second two states it is seen that these lines intersect below zero at the value of

−2J . This represents the energy advantage for the anti parallel configuration

of the persistent currents of the qubit as compared to the parallel case. The

resonance lines for high frequencies can be used to determine the value of J from

spectroscopy measurements in this way. The transition to the second exited state

is easiest (see figure 3.6b) whereas the transition to the first excited state has zero

probability for the symmetric microwave configuration. Outside the degeneracy

point transitions to the highest level require more microwave amplitude than

the others, whereas excitation of the system is in general more easy near the

degeneracy point because the applied micro wave flux couples more directly in

the σx direction, just as in the case of the single qubit.

Energy level diagram and transition rates for realistic qubits

In any realistic system there will be asymmetries present due to either fabrication

uncertainties or introduced on purpose for addressing one qubit at a time. The

asymmetries that can occur are differences in critical currents of the junctions

and thus in circulating currents (Ip,1 and Ip,2), leading to different slopes of the

energy levels, differences in area of the qubits (A1 and A2), leading to a shift

of the qubit levels with respect to each other , and a difference in the tunnel

couplings of each qubit (∆1 and ∆2).

In figure 3.7 the energy levels and transition elements for a system with (a)

different persistent currents and (b) different surfaces is shown. For the case

where the persistent currents are different the graph clearly shows the energy of

the first excited state and the second excited state are no longer independent

of the flux, since the fluxes produced will not cancel as in the symmetric case.

Since the slopes are different compared to the ground state level, a different Ip
allows for making a distinction between the levels because the resonance peaks

will shift differently with flux. Also, the transition elements for going to the first

excited state will no longer be zero since the levels are sensitive to flux. In the

case of different surfaces the energies are still independent on the applied flux,

but the degeneracy is lifted and the resonance lines will be shifted compared to

each other.
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Figure 3.7: (a) Qubits with different persistent currents. A different persistent current
for each qubit will give non-zero slopes for the first and second excited states. Also the
transition element to the first excited state is no longer zero. (b) Qubits with different
areas. A different area for a given external magnetic field makes the energy bias of the
qubits different, causing the degeneracy of the first and second excited states to be lifted.

3.5 Measurements showing the qubit-qubit cou-

pling

Measurements were performed on two coupled-qubit systems with different pa-

rameters. In this section first the general measurement principles will be given.

Then measurements on a system with mainly geometrical coupling (sample A, see

figure 3.8) of J = 500MHz will be shown. Since current from both qubits flow in

different superconducting layers of their shared line, mainly geometrical coupling

was present. Measurements were then performed on a system with coupling via

a shared junction (sample B) as is explained in section 3.3.
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Figure 3.8: Layout for the coupled qubit system of sample A. The two qubits are
position next to each other so they are coupled via their produced flux. The coupling
arising from this configuration is so that the system favours a state in which the qubits
are anti parallel compared to the uncoupled case by an energy of 2J.

Measurement principles

Measurements are performed by placing the samples inside a cavity at tempera-

ture T = 20mK. Both dc connections and high frequency connections are present

for sending current through the squid and applying high frequency microwave ra-

diation to the qubits. The switching probability of the SQUID is determined

and the state of the qubit is deduced. Copper powder filters are placed to filter

out any high frequency noise (> 100MHz) from the current through the squid

magnetometer. Switching probability was determined via both slow ramping (10

ms) and via fast pulse measurements ( pulses of order 20ns−2.5µs where used ).

The expected signal for qubits which are only geometrically coupled to the squid

changes the switching probability by only a small amount, making it necessary to

repeat each measurement many times to obtain enough resolution to determine

the state of the qubit.

Typical spectroscopy measurements can be seen in figure 3.9 where the mag-

netic field is positioned just outside the degeneracy point Φqb = 1
2
Φ0 of the qubits

where E1 − E0 = 10.5GHz and E2 − E0 = 11.3GHz. Continuous microwave

radiation is applied to the system. When the frequency of the radiation is in res-

onance with the energy distance between the ground state and one of the other

levels the system the system is partially excited and a mixture between |↓↓〉 and

|↓↑〉 at f = 10.5GHz and between |↓↓〉 and |↑↓〉 states f = 11.3GHz is created.

Since the circulating current associated with those higher states is different from
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Figure 3.9: Switching probability of the squid measurement device of sample B for
various frequencies at a fixed magnetic field around Φqb = 1

2Φ0. At frequencies where
the radiation is resonant with the level splitting of the qubit it is excited to one of the
higher states changing the persistent current in the coupled qubit system. In this case
this change in produced flux translates to a higher switching probability of the squid.

the current in the ground state resonances occur as dips or peaks on top of the

ground state curve due to a different flux picked up by the SQUID. From the po-

sition of the resonance peaks and dips as a function of the applied flux the energy

spectrum of the coupled system is determined and from this the parameters as

the coupling J and the tunnel splitting ∆ can be determined.

Coupling via the magnetic inductance (sample A)

For sample A (figure 3.8) spectroscopy measurements are performed mapping out

the energy spectrum for transitions from the ground state to the first and second

excited state as shown in figure 3.10. The spectroscopy points shown are the
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observed transitions from the ground to the first and second energy states. The

spectroscopy lines for going from the ground to the first and second state are not

on top of each other and have a different slope, indicating that the persistent

currents in both loops are different by approximately 20 %. The inset shows

measurements performed at Φ = 1
2
Φ0 compared with those performed at a flux

bias of Φ = 3
2
Φ0. The shift in the lines is due to the difference in qubit areas,

which is about 0.03%.

A full fit is used to determine the persistent currents Ip1 and Ip2, the qubit-

qubit coupling J , the tunnel splitting ∆1 and ∆2 and the surface difference σ

between the qubits. From the fit it was obtained that the persistent currents

where Ip1 = 512nA and Ip2 = 392nA, the individual tunnel splitting ∆1 =

0.45GHz and ∆1 = 1.9GHz and the difference in surface area σ = 0.027%. The

qubit-qubit coupling is J = 0.5GHz. The difference in persistent currents of

the qubits can be explained by a spread in the junction critical currents. The

difference of 10% is understandable but on the high side for the current state of

technology in which typical junctions can be made identical to within 5%. The

difference in the tunnel splitting is consistent with the difference in Josephson

energies of the junctions: The qubit with the higher persistent current has the

smaller tunnel coupling.

In these measurements the transition to the highest state |↑↑〉 flipping both

qubits was not observed. The transition elements coupling the eigenstates of the

system with σz radiation are shown in figure 3.11. Away from Φ = 1
2
Φ0, transition

to the |↑↓〉 state is most likely, followed by a high probability for a transition to

the |↓↑〉 state. However, the transition element from the ground to the highest

energy state is at least an order of magnitude less, which explains the absence

of this resonance in the spectrum. This transition can be forced by applying

higher microwave powers, but this has two significant disadvantages. For high

powers the switching behaviour of the squid is severely influenced. Also at high

power levels the other resonances are extremely broad so all other structure on

the measured curves is blurred out.

In summary, we have performed spectroscopy measurements on two coupled

flux qubits with mainly geometrical coupling. The mutual inductance between

the two qubits leads to a σzσz coupling. The observed resonances agree very well

with the two qubit Hamiltonian assuming a coupling of J = 500MHz.

Coupling via a large Josephson junction (sample B)

Measurements have been performed on sample B in which coupling is achieved

via an extra junction used as a coupling element. A junction with a large enough
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Figure 3.10: Energy levels of the inductively coupled qubits of sample A. Clearly visible
is the difference in persistent currents of the qubits of ± 10%. The surface differene is
estimated to be 0.0027%. A full fit of the spectroscopy lines showed a coupling of 500
MHz.

critical current is fabricated by using the double layers which are present when

using shadow evaporation. A key element of this design is the central island and

its connections to both the qubits (figure 3.13). The two top junctions are part

of one qubit, the two lower junctions are part of the other. The layout is such
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Figure 3.11: Energy levels and transition probabilities of the qubits coupled via the
mutual inductance as a function of the applied flux (sample A).

that the persistent currents from both qubits are forced to cross from one layer

to the other in a well defined part of the circuit. The central island visible in

the SEM picture forms the coupling junction. Current leaving the junction of

either qubit on the left is forced in the top layer of the central island, whereas the
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Figure 3.12: Two coupled flux qubits surrounded by a squid (sample B). Key element
of this design is the central island and its connections to both the qubits. This is done
in such a way that the current will distribute equally in each layer, allowing the island
to be described as a single large Josephson junction with a well defined critical current.

Figure 3.13: Here the way the junction are connected to the central island is clearly
visible. Any current extracted from the island on the right side comes from the bottom
layer of the island, and any current injected on the left side enters in the top layer of
the island (sample B, zoom in of figure 3.12).
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current on the right entering either junction is taken out of the bottom layer(figure

3.13). The island sizes are chosen so that the kinetic inductance in each layer

is much smaller than the Josephson inductance of the oxide barrier between the

layers. Effectively the central island can then be regarded as a large Josephson

junction with a critical current of Ic,cj = 35µA, giving a Josephson inductance

of 9pH . Spectroscopy measurements performed away from Φ = 1
2
Φ0 (see figure

3.14) show straight lines each pair associated with the transitions associated

with flipping either qubit to the excited state, |↓↓〉→ |↓↑〉 and |↓↓〉→ |↑↓〉. The

surface difference between the qubits is determined to be ∆A = 0.15µm2 or

0.4 % of the total surface. The persistent currents are determined from the

slopes to be Ip,1 = 260nA ± 4nA and Ip,1 = 275nA ± 4nA. The qubit-qubit

coupling is measured from the crossing points of the spectroscopy lines for high

frequencies to be J = 1.15GHz ± 0.15GHz, in good agreement with the J =

1.2GHz ± 0.1GHz calculated from the critical current of the coupling junction,

the persistent currents of the qubits, and the estimated geometrical contribution

of 2pH .

3.6 Conclusions

The origin of the coupling of flux qubits is discussed. The coupling strength

is given by J = MIp1Ip2 where M, the mutual inductance, has contributions

from geometric, kinetic and Josephson inductances. Although these contributions

might have different mechanisms, they all add to the coupling in a similar way.

Using spectroscopy measurements to map out the level diagram of a coupled

system it is shown that Josephson persistent current qubits can be coupled via

their flux degree of freedom.

In sample A mainly geometrical coupling is achieved giving a coupling of J =

500MHz. In order to increase the coupling and to make it more controllable in

the fabrication process a shared junction was used as a coupling element in sample

B. Coupling in this way is achieved by making use of the double layer structure

one always has with shadow evaporation. Measurements on sample B show a

coupling of J = 1.15Ghz which is in good agreement with the calculated value.

The measurements presented show that two coupled qubits can be well described

by the four dimensional two-qubit Hamiltonian obtained by approximating the

Josephson persistent current qubit as a two level system.

It is also shown that coupling in such system can be designed flexible within

the wanted range via a large shared junction between the qubits. This allows for

great flexibility in designing systems in which coupling via the phase degree of
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Figure 3.14: High-bias spectroscopy measurements show the lines intersect on average
at approximately f = −2.2Ghz indicating a qubit qubit coupling of J = 1.1Ghz. The
lines do not fall on top of each other due to an asymmetry in the qubit surface and thus
in the flux bias of the qubits.

freedom is needed. Also, since the coupling is mainly via the phase over this large

junction the actual flux signal can be smaller which is convenient for minimizing

cross talk between Josephson persistent current qubits when many systems have

to be placed near each other.
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Chapter 4

Coherent manipulation of two coupled

Josephson Persistent Current Qubits

Spectroscopy measurements from the ground state as well as from the partially

populated first excited state reveal the energy level structure of two coupled

Josephson persistent current qubits. Coherent Rabi oscillations in a coupled qubit

system have been observed. Conditional spectroscopy is performed by using a

π-pulse to flip one of the qubits followed by a microwave burst to incoherently

pump the system from this excited state to a higher state.
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Figure 4.1: Coupled qubits sharing a large junction to achieve a coupling of J =
1.15GHz. On the left the microwave line is visible used for exciting the system by
applying a high frequency microwave signal. The SQUID is shunted with a capacitor
visible on the right.

4.1 Introduction

Coherent operations have been performed in coupled superconducting charge

qubits [1, 2] as well as in a single Josephson persistent current qubit coupled to

an oscillator [3]. Also coupling of superconducting flux qubits has been achieved

[4, 5]. In order to create entangled states in qubits and demonstrate two-qubit

operations for investigating the principles of quantum computation, complete

knowledge of the energy spectrum of these systems is needed. One should then

be able to coherently move the state of the system through the four dimensional

Hilbert space.

In this chapter measurements on two coupled Josephson persistent current

qubits (figure 4.1) are shown. Spectroscopy measurements have been performed

on a coupled qubit system showing not only transitions starting from the ground

state, but also excitations from the first excited state to higher states. This

reveals the two qubit energy level structure (section 4.2).
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Figure 4.2: Attenuation of the microwave signals is present at various temperature
stages to reduce thermal noise from higher temperatures.

Transitions from the first excited state to higher states were visible in continuous-

wave spectroscopy due to a noise induced non-zero population of the first excited

state. This unwanted population of the higher states was reduced by additional

attenuation of the noise from high temperatures. In section 4.3 coherent oscil-

lations flipping each individual qubit of the coupled qubit system are presented

and possible decoherence mechanisms will be discussed.

Finally conditional spectroscopy measurements exciting higher lying transi-

tions after applying an nπ-pulse to go coherently from the ground state to the

first excited state have been performed (section 4.4).

4.2 Transitions from the ground state and the

partially populated first excited state

In the coupled qubit system discussed in section 3.5 a relatively large qubit-qubit

coupling J is achieved by using a large Josephson junction as a coupling element.

Spectroscopy measurements were performed on this system to determine the po-

sition of the energy levels as a function of the external applied flux. Spectroscopy

measurements show a qubit-qubit coupling of J = 1.15GHz (see chapter 3).

Measurement wires and microwave lines going from room temperature at T ∼
300K down to the mixing chamber temperature T ∼ 20mK are filtered using

copper powder filters and microwave attenuators (see figure 4.2) at various stages

to filter out noise from higher temperatures. Without attenuation at the mixing

chamber stage (20mK), resonances from the first excited state to higher states

were also observed. The measured spectrum is shown in the lower part of figure

4.3 by the solid dots, together with the fitted energy level diagram of this system.

The transitions from the ground state to the first, second and third exited state

are indicated with the solid black line. The dotted lines indicate the transitions

from the first excited state to the second and third excited states, and from the
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Figure 4.3: Energy spectrum (top) of the two qubit system. The dots (bottom) are
measured transitions. The calculated transitions from the ground state to the higher
states (solid line) and from the first excited state to the higher states (dashed line) are
in good agreement with the measurements. The energies and energy differences are
plotted with Ip,1 = 260nA and Ip,2 = 275nA, the qubit-qubit coupling J = 1.15GHz,
and tunnel splitting ∆1 = 1.7GHz and ∆2 = 0.8GHz. The difference in area is
∆S = 0.004Saverage
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Figure 4.4: Calculated transition elements for excitations from the ground state to
the higher states, from the first excited state to the higher states, and from the second
excited state to the highest state. Parameters used here are the fitting parameters of
figure 4.3
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second excited state to the third excited state. Observation of transitions from a

higher state implies that the system did not fully cool down to its ground state,

as would be expected from the substrate temperature of T = 20mK. The higher

effective temperature is attributed to the presence of the microwave line used for

applying high frequency radiation to the qubits. The theoretical level diagram

shown in the top part of figure 4.3 is obtained with Ip1 = 260nA, Ip2 = 275nA,

∆1 = 1.7GHz and ∆2 = 0.8GHz. The difference in area is ∆S = 0.004Saverage.

In the spectroscopy data the anti-crossing of 2GHz between the second and

the third excited state is clearly visible at Φ = −3mΦ0. The smaller anti-crossing

of 250MHz between those levels is observed at Φ = +2mΦ0. The difference in

the anti-crossings is caused by the difference in tunnel splitting of the individual

qubits.

Effective temperature for a system coupled to more then one bath

Transitions from the first excited state to the higher states are observed in this

coupled qubit system as shown in figure 4.3. This means that, in the absence of

microwave excitation, there is a non-zero population of this first excited state.

The additional excitations are attributed to the presence of the microwave line

increasing the effective noise temperature. The temperature of the environment

seen via the squid is T = 20mK since filtering suppresses high frequency noise

from higher temperatures. However, the environment seen via the microwave

line is at T = 1.5K since, for the measurements of figure 4.3, no attenuation was

present at a lower temperature stage of the cryostat. Both environments cause

transitions via emission Γ↓ and absorption Γ↑ of energy which both contribute to

the final effective population of the two levels (figure 4.5).

With the population of the ground state |0〉 and the first excited state |1〉
denoted as p0 and p1, the rate of change in population of the states for a system

coupled to a single environment can be obtained from the balance equations

ṗ1 = p0Γ↑ − p1Γ↓ (4.1)

ṗ0 = p1Γ↓ − p0Γ↑ (4.2)

The steady state where ṗ1 = 0 and ṗ0 = 0 should satisfy the Boltzmann distri-

bution

p1

p0

=
Γ↓
Γ↑

= e−∆E/kBT (4.3)

where ∆E = E1 − E0 is the energy difference between the levels, T is the tem-

perature of the bath, and p0 + p1 = 1. The populations of the |0〉 state and the
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Figure 4.5: For a two level system coupled to a bath at a finite temperature the pop-
ulation p0 and p1 of the ground and the excited state are determined via a detailed
balance of the excitation Γ↑ and emission rates Γ↓ indicating the system can loose or
gain energy from the environment. In the case of coupling to more then one environ-
ment at different temperatures the rate equations are more complicated and it is no
longer possible to assign a single temperature to the system.

|1〉 state are

p0 =
1

1 + e−∆E/kBT
(4.4)

p1 =
e−∆E/kBT

1 + e−∆E/kBT
(4.5)

The population of the levels in a two level system coupled to two separate

baths at different temperatures can again be described by looking at the popula-

tion balance. The two baths are associated with the SQUID at Tsq and with the

microwave line at Tmw. Absorption from and emission to both baths is possible,

yielding

ṗ1 = p0 [Γ↑,sq + Γ↑,mw] − p1 [Γ↓,sq + Γ↓,mw] (4.6)

ṗ0 = p1 [Γ↓,sq + Γ↓,mw] − p0 [Γ↑,sq + Γ↑,mw] (4.7)

The equilibrium condition is then

p1

p0
=

Γ↓,sq + Γ↓,mw

Γ↑,sq + Γ↑,mw
(4.8)

The absorption and emission rates are directly related to the bath to which the

system is coupled. For each individual bath the rates follow the Boltzmann distri-

bution
Γ↓,sq

Γ↑,sq
= e−∆E/kBTsq and

Γ↓,mw

Γ↑,mw
= e−∆E/kBTmw . The equilibrium population

is now
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Figure 4.6: Population of the excited state in a two level system coupled to two en-
vironmental baths, the squid environment being at Tsq = 25mK and the microwave
environment at Tmw = 1.5K. The levelsplitting of the quantum system are 2GHz and
5GHz.

p1

p0
=

Γ↑,sqe−∆E/kBTsq + Γ↑,mwe
−∆E/kBTmw

Γ↑,sq + Γ↑,mw
(4.9)

The population of the excited state in a two state system versus the ratio of

the relaxation rates due to the squid (at Tsq = 25mK) and the microwave line (at

Tmw = 1.5K) is plotted in figure 4.6 for energy differences of 2GHz and 5GHz.

Note that one cannot simply define a new effective temperature of the system

since depending on the level splitting ∆E of the system the relaxation rates are

weighted differently. Detailed knowledge of these rates is needed to determine

the population [6].
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Figure 4.7: Spectroscopy measurements showing transitions from the ground to the
second and third excited state. Moving the flux in this region changes the character of
the observed resonances from a positive signal (”peak”) to a negative signal (”dip”) as
can be seen in these traces. for the observed peaks actually a dip would be expected.
This is caused by the fact that the system there relaxes to the second excited state which
has a long relaxation time, changing the character of the observed transition.



62

Chapter 4.Coherent manipulation of two coupled Josephson Persistent Current

Qubits

E0

E1

E2

�r2,0

�r2,1

�r1,0

�e:0,2

0

1

2

Figure 4.8: After excitation of the system to the |2〉 state the system can relax to the
ground state |0〉 directly or via the intermediate energy state |1〉. Depending on the
ratio of the relaxation rates a different mixture is obtained when the system is pumped
to the second excited state and thus the measured signal strongly depends on this.

Relaxation via intermediate levels

In figure 4.7 spectroscopy measurements around right the anti-crossing point be-

tween the second and third level of the energy spectrum of figure 4.3 are plotted.

The anti crossing with a distance of 250MHz is clearly visible in the top of the

figure. One observes that, following the two resonance features with increasing

flux bias, the character of the resonances change from positive (”peak”) to neg-

ative (”dip”). However, the slope ∂E
∂Φ

of the level as a function of flux does not

change. Since the direction of the current is determined by this slope of the

energy level with respect to flux according to (Ip1 + Ip2) = −∂E
∂Φ

, the character

of the resonance feature should not change. This change in measured signal is

caused by a difference in relaxation times for the transitions between the different

levels. After excitation of the system to state |2〉 using microwaves (figure 4.8)

the system very quickly relaxes to state |1〉. Measurement of the signal is per-

formed some 50ns after excitation, so if Γ−1
r2,1 << 50ns the system is then in the

first excited state and the measured signal is the signal associated with that state,

which is opposite in sign. In the region where this effect is observed the transition

element for applied σz flux, coupling the second excited state to the first excited

state is large, as shown in figure 4.4. In this region around Φ ≈ 3mΦ0 the |2〉
to |1〉 transition element (middle panel) is larger then the |2〉 to |0〉 element (top

panel), making the relaxation rate Γ↓2,1 higher then Γ↓2,0. Similarly, the |3〉 to

|2〉 element (bottom graph) is larger then the |3〉 to |1〉 and |3〉 to |0〉 elements,

which makes the system, after it is excited, relax to the second excited state.

In this way, the |2〉 level is used to populate the |1〉 state using continuous

wave radiation, and depopulate the ground state, and similar for the third ex-

cited state. The result is a measured signal which belongs to the first excited

energy state. The exact sign of the signal depends strongly on the details of the
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Figure 4.9: Timing scheme for applying microwaves and the measurement pulse to
the system. First a microwave pulse of a specific duration τmw is applied to the coupled
qubit system. When the frequency of the applied microwave is resonant with the energy
difference between the levels of the system, the system performs Rabi-oscillations. After
the microwave pulse the state of the coupled qubit system is read-out by measuring the
switching probability of the SQUID.

incoherent mixture that is created by this process. These relaxation rates cannot

be independently measured so no quantitative comparison can be made.

4.3 Coherent transitions from the ground state

to higher states.

The minimum observed peak width was 70MHz indicating a short dephasing

time of τφ ∼ 5ns. For large microwave powers applied to the qubit system

coherent oscillations between the ground state and the first and second excited

state have been observed as a function of the applied pulse length. The pulse

scheme is schematically shown in figure 4.9. First the microwave radiation is

switched on for a duration τmw which is varied between 1ns and ∼ 100ns by

mixing the signal from a CW microwave source with a dc pulse of the desired

duration, see figure 4.10.

At resonance the double qubit system is oscillating between the two states.

The measured oscillations shown in figure 4.11 disappear after a pulse length

τmw ≈ 75ns. Rabi oscillation were observed at various values of the flux bias, but

only for specific values of the bias decay times of up to τmw ≈ 75ns were observed.

After the microwave pulse, the bias current through the squid is switched on to

perform the state detection measurement. Depending on the flux state of the

qubit after the microwave pulse the switching probability of the squid is increased
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Figure 4.10: Continuous microwave radiation is mixed with a dc pulse to create
microwave pulses of the desired duration.

0 20 40 60 80 100 120 140

0.5

0.6

0.7

0.8

P s
w

�
mw

( ns )

Figure 4.11: SQUID switching probability changes due to a changing persistent
current in the qubit, which performs coherent oscillations between the ground state |0〉
and the first excited state |1〉 at a level spacing of f = 8.3GHz. The oscillation period
is ∼ 6ns.
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or decreased. In figure 4.12 oscillations between the ground state |0〉 and the first

excited state |1〉 are visible for various microwave powers. The frequencies of

the fitted oscillations are plotted in 4.13 and show the expected linear behaviour

for the low amplitudes of the applied microwaves. For higher driving powers

the mixers making the microwave pulse enter the regime were they no longer

behaving linear, making it in the specific setup used not possible to verify the

frequency versus power relation over a larger range.

Ramsey interference.

It is observed that for high driving powers coherent oscillations are visible for

pulse lenghts τmw of up to 70ns. For more complicated pulse schemes, it is

important that the phase of the system is conserved over a longer time even

without driving. To determine the free decay time of the phase of the system

Ramsey interference measurements were performed. Two consecutive π/2 pulses

are applied to the qubit system (figure 4.14) and the time between the pulses is

varied. The first pulse brings the state of the system in a superposition of the

ground state and the excite state. Depending on the detuning and the waiting

time the second pulse either continues rotation of the system towards the excited

state, or rotates the system back to the ground state creating an interference

pattern, seen in figure 4.15 at a resonance of 8GHz and a detuning of 200MHz.

The interference pattern disappears after only ∼ 7ns indicating a short free decay

time for the phase of the system.

Source of decoherence.

From figure 4.12 we see that the Rabi oscillations are visible up to a micro-wave

pulse length of typically τmw ≈ 50ns. During the experiment we experienced

low frequency flux jumps on a time scale of ∼5 minutes causing jumps in peak

positions of the order of 75MHz from trace to trace (see figure 4.16). The

influence of these flux jumps is strongly reduced in a region where the derivative of

the energy difference between the levels ∆E to the external flux is zero, ∂∆E
∂Φext

= 0,

as indicated in the inset of figure 4.16. This reduction indicates that correlated

flux jump offset the flux bias of our qubits.

These slow flux jumps limit the ability to perform coherent operations since

each measured point takes about 1 to 10 seconds and to obtain a trace like in figure

4.17 takes about 10 minutes. One can see that the system oscillates around some

equilibrium SQUID switching probability. When the measurement has arrived

at pulse lengths of τmw = 75ns this equilibrium value changes indicating the

effective flux bias of the system has changed. This change corresponds to a flux
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Figure 4.12: Coherent oscillations between the ground state |0〉 and the first excited
stated |1〉 for various driving powers, each trace is 3dB less in power, going from top
to bottom.
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Figure 4.13: Observed Rabi frequency versus the applied microwave amplitude.
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Figure 4.14: Ramsey interference scheme: The time between two π/2 pulses is varied
to probe the nondriven dephasing time of the system.
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Figure 4.15: Ramsey interference pattern at a resonance frequency of 8GHz and a
detuning of 200MHz. The interference pattern disappears after only ∼ 7ns indicating
a short T2.

of ∆Φ = 40µΦ0. In practice this means that before a trace is taken, the exact

position of the resonance should be determined. Even at the flux bias point with
∂∆E
∂Φext

= 0 the minimum peak width is of the order of ∼ 70MHz indicating an

additional source causing a similar dephasing rate is present, which is not caused

by correlated flux noise. Influence of long distance flux noise can thus be reduced

[7], but the other noise source cannot. This source is asymmetric in nature.

Possible sources are locally originated flux noise or critical current noise.

We changed the bias current trough the SQUID and no change was observed,

indicating influence of noise via the measurement circuit is not the limiting factor.

4.4 Conditional spectroscopy from the first ex-

cited state to higher states.

To perform conditional qubit operations one needs to be able to induce coherent

operations on the first qubit followed by coherent transitions on the second qubit.
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Figure 4.16: Measurements of the qubit resonance for the |0〉 to |1〉 and the |0〉 to |3〉
transition at a flux value as indicated in the level diagram in the inset by the dashed
line. At this flux bias point the energy difference between the |0〉 and |1〉 state is not
independent of the external flux Φext but the difference in energy between the |0〉 and
|3〉 state is independent of the external flux. The resonances around f = 5.7GHz show
random shifts of ∆f ∼ 75MHz from trace to trace while those jumps are not visible
for the f = 10GHz resonances.
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Figure 4.17: Rabi oscillations are clearly visible for pulse lengths up to τmw ∼ 60ns.
When the measurement arrived at a pulse time of τmw = 80ns the mean value of the
signal changes, indicating a flux jump of ∆Φ ∼ 40µΦ0. Low frequency flux jumps
occur on a time scale of 5-15 minutes. Before every trace showing Rabi oscillations the
maximum of the resonance is detected to make sure the Rabi measurement is performed
on resonance.

To do this microwave pulses with different frequencies f1 and f2 have to be applied

sequentially by combining two independent sources (figure 4.18).

A first step towards this is applying a π-pulse to so that the system coherently

goes from the |0〉 to the |1〉 state followed by spectroscopy measurements on the

second transition from the |1〉 to the |3〉 state (see figure 4.19). In this way we

probe the location of the second resonance. In figure 4.20 a frequency sweep

with τ2 = 50ns performed after an initial nπ-pulse at frequency f1 is shown, with

n = 0, 1, 2 or 3. For n = 1 and n = 3 the resonance at f2 = 4.5GHz, associated

with the |1〉 to |3〉 transition, indicating the system is excited after coherently

populating the |1〉 state. For n = 0 and n = 2 these resonances are not visible,

indicating that only |0〉 is populated at the moment the second microwave pulse

is applied.
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Figure 4.18: Setup for applying two consecutive microwave pulses of the order of
10− 100ns. Each microwave source gives continuous-wave radiation. Pulses generated
by a DC pulse generator are then multiplied with the microwaves creating microwave
pulses. These two pulses of different frequencies and times are then added and inserted
in the microwave line going down in the dilution refrigerator.
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Figure 4.19: Timing scheme for applying multiple microwave pulses to the qubit before
measuring. For addressing two transitions consecutive pulses of different frequency and
duration are applied. First a nπ pulse of duration τmw1 at frequency f1 is applied on
the |0〉 to |1〉 transition. After that spectroscopy can be performed at frequency f2 from
this higher state to the other states.
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Figure 4.20: Conditional spectroscopy measurement. An n · πpulse is applied at
f1 = 5.6GHz making the system go coherently to the |1〉 state and back, depending
on n. After this a τ2 = 50ns microwave burst is applied for various frequencies f2.
A resonance at f2 = 4.5GHz is visible for n = 1 and n = 3, indicating the energy
difference between the |1〉 state and the |3〉 state corresponds to that frequency.
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4.5 Conclusions

Continuous wave spectroscopy measurement from the ground state as well as

from the partially populated first excited state reveal the level structure of the

2-qubit system. It is shown that the measured level structure can be explained by

using the four level approximation of two coupled Josephson persistent current

qubits each described as a two state system, coupled via σzσz coupling. Coherent

oscillations flipping each qubit have been performed by applying microwaves to

the coupled qubit system. The oscillations are visible for pulse lengths up to

τmw ∼ 75ns. Ramsey interference measurements indicate a short non-driven

dephasing time of the order of 7 ns. Conditional spectroscopy measurement from

the first excited state to higher states are observed after applying a π, 2π or

3π -pulse to go from the ground state to the higher lying states followed by a

longer microwave burst. Low frequency flux jumps are observed causing the peak

position to shift in the order of 75MHz. This shift was reduced when the system

was biased in a region where the levels are to first order independent of the

external applied flux. However, no major improvement is seen when operating in

such a point indicating the long distance flux jumps were not the only source of

dephasing.
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Chapter 5

Phase distribution in current carrying

double layer superconducting lines

Superconducting persistent current qubits are made by 2-angle shadow evap-

oration. This technique results in structures and lines consisting of a double

aluminium layer with an oxide barrier in between. These structures are modelled

and the phase distribution in the lines is investigated. Employing a double layer

line for coupling two Josephson persistent current qubits is discussed. It will be

shown that, with a carefully chosen design, the coupling strength can be designed

over a large range of values making this way of coupling qubits an attractive one.
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5.1 Introduction

Superconducting two level systems require small Josephson junctions which can

be made using shadow evaporation. Evaporation of aluminium is done under two

angles, and in between the evaporation steps the first aluminium layer is oxidized

creating a barrier that forms the Josephson junction. Due to the shadow evapo-

ration technique most structures consist of superconducting parts on top of each

other, separated by a large area junction. In the case of a single Josephson per-

sistent current qubit the additional junctions are larger than the three junctions

forming the potential landscape of the system so their influence is small. The

phase drop over such a line depends on the detailed way the current flows. This

double layer structure is modelled in order to gain understanding of the phase

and current distributions. This enables us to use these double layers with their

distributed junctions in designing new and more complex systems, like coupling

two or more qubits. Also phase drop over these extra junctions can be calculated

and taken into account in the design of a system.

In section 5.2 the double layer structure with its distributed junction will be

modelled and the differential equations describing the phases in these systems

are derived. In section 5.3 stationary solutions for various cases will be given.

After this in section 5.4 an example of how to use this extra layer as a coupling

element is discussed.

5.2 Modelling a double layer separated by a thin

oxide barrier

In superconducting devices fabricated using shadow evaporation techniques, like

the Josephson junction in figure 5.1, one evaporates aluminium under two angles

with an oxidation step in between to define the junction barrier. This aluminium

oxide barrier is present in all lines fabricated in the same step as the Josephson

junctions and thus all lines are actually two lines separated by a distributed

junction.

To describe the phase distribution as a function of the position x along the

line the currents in the line are considered [1, 2]. Schematically a line with an

inductance L and critical current Ic is depicted in figure 5.2. Taking the limit of

∆x→ 0, differential equations are derived describing the phases in these lines.

At the bottom (top) node there are three currents Ib,in(x), Ib,out(x) and I⊥(x)

(It,in(x),It,out(x) and I⊥(x) ) according to figure 5.2. The distributed critical current

per unit length between the layers and the distributed capacitance between the
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2 m


Josephson

junction

Steps due to

two-angle

evaporation

21

evap. dir.

Figure 5.1: Josephson junction fabricated using shadow evaporation. Aluminium is
evaporated under two angles with an oxidation step between the evaporation steps. The
aluminium oxide barrier forms the junction. The lines from the two evaporation steps
are shifted with respect to each other in the direction of the shadow evaporation indicated
by arrow 1 and 2. This shift creates the actual junction and the steps in the lines.

Ib,in

b,x


t,x


b,x-�x


t,x- x�


b,x+�x


t,x+ x�

It,in

Ib,out

It,out

I�,x

Figure 5.2: Equivalent electric circuit of a small section of double layer line. The line
consists of two layers of inductors (top and bottom) which are coupled to each other
via a distributed Josephson junction. In the nodes phases φt and φb and in the lines
currents Ib, It and I⊥ are defined.
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layers per unit length are given by ic = Ic

Length
and c = C

Length
, so they are given

in A/m and F/m. Because the two layers have different inductances (as is the

case in our shadow evaporation process were the thickness of the bottom and top

layers are different) the distributed inductances lb = Lb

Length
for the bottom and

lt = Lt

Length
for the top layer are used. For a small section of line with length ∆x

the critical current, capacitance and inductances are now given by ic∆x,c∆x ,

lb∆x and lt∆x. The current in a superconductor is related to the phase along

the superconductor according to ∆φ = 2π IL
Φ0

where L is the total inductance of

the line and I is the current through the line. The various currents in figure 5.2

can be written as a function of the phase in the nodes of the line by:

Ib,in(x) =
Φ0

2π

1

lb∆x
(φb(x) − φb(x− ∆x))

Ib,out(x) =
Φ0

2π

1

lb∆x
(φb(x+ ∆x) − φb(x))

It,in(x) =
Φ0

2π

1

lt∆x
(φt(x) − φt(x− ∆x)) (5.1)

It,out(x) =
Φ0

2π

1

lt∆x
(φt(x+ ∆x) − φt(x))

I⊥(x) = (ic∆x)sin(φt(x) − φb(x)) +
Φ0

2π
c∆x(φ̈t(x) − φ̈b(x))

In each node there is current conservation Ib,in(x) = Ib,out(x)+I⊥(x) and It,in(x) =

It,out(x) − I⊥(x). By using (5.1) these current conservation rules can be written

as a function of the phases in the system:

Φ0

2π

1

lb(∆x)2
[2φb(x)−φb(x−∆x)−φb(x+∆x)] = icsin(φt(x)−φb(x))+

Φ0

2π
c(φ̈t(x)−φ̈b(x))

Φ0

2π

1

lt(∆x)2
[2φt(x)−φt(x−∆x)−φt(x+∆x)] = −icsin(φt(x)−φb(x))−Φ0

2π
c(φ̈t(x)−φ̈b(x))

(5.2)

In the limit where ∆x → 0 the equations actually contain the derivatives of

the phase as a function of the position x. So differential equations are obtained

of the form

Φ0

2π

−∂2φb(x)

∂x2
= lbicsin(φt(x) − φb(x)) + lb

Φ0

2π
c(φ̈t(x) − φ̈b(x))
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Φ0

2π

−∂2φt(x)

∂x2
= −lticsin(φt(x) − φb(x)) − lt

Φ0

2π
c(φ̈t(x) − φ̈b(x)) (5.3)

By separating the sum and difference of the phases the two equations describing

the phase difference across the layers and the total phase along the layers are

now:

Φ0

2π

∂2(φt(x) − φb(x))

∂x2
= (lb + lt)icsin(φt(x)−φb(x))+(lb + lt)φ0c(φ̈t(x)− φ̈b(x))

Φ0

2π

∂2(φt(x)
lt

+ φb(x)
lb

)

∂x2
= 0 (5.4)

Finally, these equations can be written as equations describing both the to-

tal phase in the line and the phase difference between the top and the bot-

tom part of the line by defining difference φ−(x) = φt(x) − φb(x) and sum

φ+(x) = lt+lb
2(ltlb)

(lbφt(x)+ltφb(x))
2

coordinates. The average distributed inductance l

is defined as l = (lb + lt)/2. For the case of equal inductances we simply end up

with φ+(x) = (φt(x)+φb(x))
2

. The system of the double superconducting layers with

a distributed Josephson junction is described as

Φ0

2π

1

l

∂2φ−(x)

∂x2
= 2icsin(φ−(x)) +

Φ0

2π
cφ̈−(x)

Φ0

2π

1

l

∂2φ+(x)

∂x2
= 0 (5.5)

The first equation describes the difference in phase between the top and the

bottom layer as a function of the position x along the line. The second equation

describes the phase as we move along the line. The fact that the second derivative

of the sum of the phases is zero means there is a constant increase of (the weighted

sum of the) phase along the top and bottom layer of the wire. One can see from

these equations that the length scale governing the redistribution of the currents

between the two layers is given by

λ =

√
Φ0

2πic(lb + lt)
(5.6)

Note that l contains both the geometric and the kinetic inductance, with in thin

double layer lines the kinetic inductance being the dominating one. For a small

transverse critical current ic λ will be large, since it is harder for the current to

cross the layer.
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Application to double layer aluminium structures.

For the thin film aluminium wires used for making Josephson persistent current

qubits the critical current densities are typically 100nA per 100nm by 100nm

tunnelbarrier, giving for a 200nm wide wire a transverse critical current density

of ic = 2 µA/µm. For double layer wires of each 40 nm thick and 200nm wide

the kinetic inductance is about 2 pH/µm [1, 2, 3]. For such wires the length scale

for crossing between the layers of the inserted currents is λ ≈ 5µm.

5.3 Stationary solutions for the current and phase

distribution

Assuming Ibias 
 Ic we derive stationary solutions for two cases. One is the case

where the current is inserted in the bottom layer of an infinitely long line. The

second case is where the current inserted in the bottom layer will be extracted

at the top layer at a fixed distance x0.

Ib,in Iout

Iout

X0

Figure 5.3: In the double layer line the current is injected on one side in the bottom
layer, and divides equally between the layers after some distance x >> λ.

For small transverse currents the current in the junction can be written as

2isin(φt(x) − φb(x)) ≈ 2i(φt(x) − φb(x)) hence equation 5.5 can be written as

Φ0

2πl

∂2φ−(x)

∂x2
= 2ic(φ−(x))

Φ0

2πl

∂2φ+(x)

∂x2
= 0 (5.7)

These equations will be used to calculate the phase distribution in the line. In

order to derive the currents flowing in the system we have to look at the phase

difference between the layers φ−(x) for the transverse current, and at the sum

phase φ+(x) for the current in the parallel direction.
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It(x) =
Φ0

2πl

∂φt(x)

∂x
(5.8)

Ib(x) =
Φ0

2πl

∂φb(x)

∂x
(5.9)

Current in an infinite line of indentical layers

For the case shown in figure 5.3 with the current inserted in the bottom layer the

solution to equation 5.7 is of the form φ−(x) = Ae−
x
λ where λ =

√
Φ0

2πic(lb+lt)
.

For large values of x the phase difference between both layers approaches zero.

To determine the value of A the boundary condition of the problem is taken into

account. For x→∞ the phases are equal and for identical layers half the inserted

current Ibias has flown from the bottom to the top layer. The current as a function

of the position x is given by I⊥(x) = (ic∆x)φ−(x) so Ibias

2
=
∫∞
0
icAe

−x
λ dx giving

A = 1
λ

Ibias

2ic
. The average phase increase φ+(x) is the average of the phase in the

top and the bottom layer. This means the phases in the system are given by

φ−(x) =
1

λ

Ibias

2ic
e−

x
λ (5.10)

φ+(x) =
l2π

Φ0

Ibias

2
x (5.11)

For the case of identical layers with a current Ib,in = 300nA and ic = 2µA/µm

the phase difference is plotted in figure 5.4 for the cases where l = 0.5pH/µm

and l = 2pH/µm. The phase difference drops exponentially, while the average

phase picked up by the line increases linear in x. For a higher value of the

inductance per meter l the phase is forced to equalise faster. The currents in

the transverse direction I⊥(x) and the average current per layer in the parallel

direction I+(x) = It(x)+It(x)
2

are

I⊥(x) = icφ−(x) =
1

λ

Ibias

2
e−

x
λ (5.12)

and

I+(x) =
φ0

l

∂φ+(x)

∂x
=
Ibias

2
(5.13)

as plotted in figure 5.5. The current is injected in the bottom layer, while It,in = 0.

After some distance part of the current has crossed the barrier between the layers,

and the phases in both layers become equal. For the symmetric case this means

the currents flowing in the top an bottom layer become equal.
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Figure 5.4: a. Sum and difference of the phase in an infinite line consisting of
identical layers for various values of l. Current is inserted in the bottom layer and will
redistribute over a typical length scale λ. The bias current is Ibias = 300nA, the critical
current ic = 2µA/µm. The inductances are l = 0.5pH/µm (dotted) and l = 2pH/µm

(solid), giving a redistribution length of λ = 12.6µm and λ = 6.3µm respectively. For
the line with the higher inductance per meter the phase increases faster along the line,
and redistribution of the current occurs earlier since the current flows easier through
the junction layer.

Transverse current between bottom and top layer

The case where the current is injected on the left in the bottom layer and is

extracted at the top layer is depicted in figure 5.6.

The current has to cross the barrier between the layers in the distance x0.

Due to the symmetry of the problem the function describing the phase difference

is of the form φ−(x) = A[e
x
λ +e−

x
λ ], since current always flows from the bottom to
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Figure 5.5: Plot of the transverse current, the current in the bottom and the current
in the top layer for an infinite line consisting of identical layers. The inserted current is
Ib,in = 300nA. The transverse current per micrometer is at a maximum in the beginning
of the line, and approaches zero when the currents in the longitudinal direction are equal.

the top line. Also the distribution of the transverse current should be symmetric

around the middle of the line. The boundary condition to the equation is that

all the current should go through the barrier between the left side of the wire at

x = −x0

2
and the right side at x = x0

2
giving

Ib,in =

∫ L
2

−L
2

icA[e
x
λ + e−

x
λ ]dx (5.14)

or

Ib,in = [icAλ[e
x
λ − e−

x
λ ]]

L
2
−L
2

= icA2λ[e
L/2

λ − e−β
L/2

λ ] (5.15)
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Ib,in

It,out

X
x0/2-x /20

Figure 5.6: A double layer line where the current is injected on one side in the bottom
layer, and is extracted from the top layer at the other side of the line.

from which we can extract A :

A =
Ib,in
ic

1

2λ

1

[e
L/2

λ − e−
L/2

λ ]
(5.16)

This gives for the phase difference between bottom and the top layer :

φ−(x) =
Ibias

ic

1

2λ

e
x
λ + e−

x
λ

e
L/2

λ − e−
L/2

λ

(5.17)

In the limit where the inductance l of the line goes to zero, the typical length

scale λ will go to infinity. This means that there will be (almost) no phase drop

over the inductance of the wire and there will be phase drop over the distributed

junction only. Since

lim

λ→ ∞ Ib,in
ic

1

λ

[e
x
2λ + e−

x
λ ]

[e
L/2

λ − e−β L/2
λ ]

≈ Ibias

icL
(5.18)

the line works as if there is a single junction between the parts of the line, with

uniform phase, with a critical current of ic · Length, the critical current of the

total line area.

In figure 5.7 the phase difference and the sum of the phases are shown as

a function of the position x for various values of l for a given bias current. In

figure 5.7a the slope of the sum of the phases is given by the inductance: the

higher the inductance, the larger the phase difference established for a given

bias current through the line. The phase differences are most significant at the

points where the current is injected or extracted from the line (figure 5.7b). Here

the difference in current between the top and bottom layer is largest. In the

middle half of the current is flowing in the bottom layer and half of the current

is flowing in the top layer. For large values of the inductance l the currents
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Figure 5.7: Sum and difference of the phase in a double layer line for various values of
l. Ibias = 300nA, and the distributed critical current is i = 2000nA/µm. For a higher
value of l the current will be forced to cross to the other layer closer to the edges of the
line, creating a larger phase difference there. Currents will then be equally redistributed
in the middle, minimizing the phase difference there.

redistribute quicker once inserted into the structure. For small values of l the

current will flow throughout the top or bottom layer more easy, and will cross the

barrier over the whole junction. The phase difference across the barrier is almost
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independent of the position along the the line. The structure acts just as a single

junction with, for ic = 2µA/µm and a length of x0 = 10µm, a critical current of

Ic = ic · Length = 20µA. This gives for an imposed current of Ibias = 300nA a

phase difference of ∆φ = 300nA
20µA

≈ 0.015

5.4 Application of a double layer distributed junc-

tion as coupling element

In the previous sections it is shown how to calculate current and phase distribu-

tions in double superconducting layers with a tunneling layer. This procedure can

also be used to accurately design an element for coupling Josephson persistent

current qubits via their phase degree of freedom, see chapter 3. This is done by

forcing the currents of both qubits to cross at a well defined part of the circuit.

This coupling island is shown in figure 5.8. The currents from the qubits enter

the central island via the top layer on the right, and is extracted from the bottom

layer on the left. In this way the island behaves as a large Josephson junction. For

the typical shadow evaporated junctions used for the samples discussed in this

thesis the critical current is for the central island in figure 5.8 Ic ∼ 40µA. The

kinetic inductance per meter for one layer is l ≈ 0.5pH/µm, which makes that

the current divides equally over the 4µm by 1µm sized island. The island there-

fore acts as a single junction with a critical current ∼ 40µA , giving a Josephson

coupling of M = Φ0

2πIc
∼ 10pH , which is in the desired range.

5.5 Summary

In a realistic design it is important to take into account that with shadow evap-

oration we usually end up with double layer structures, forming both wanted

and unwanted junctions and inductances. The current redistribution length λ,

is of the order of a few micro meter. For qubits with a typical size of λ the

behaviour of the lines depend strongly on the details of the lines. By modelling

these double layers, the effects can be accurately quantitatively analysed. The

unwanted effects can then be taken into account in the system description and

can be minimized.

Also double layers can be used to accurately design an element for coupling

qubits. This allows for greater flexibility in systems in which two or more qubits

or a qubit and a squid are coupled. That this coupling can be designed within

the wanted range for Josephson persistent current qubits is shown in chapter 3.
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central coupling

junction

current extracted

from bottom layer

current injected

in top layer

Figure 5.8: SEM picture of a part of the coupled qubit system described in chapter 3.
The two top junctions are part of one qubit, the two bottom junctions of the other. The
current is forced to enter the central island in the top layer on the left and is extracted
from the bottom layer on the right. The island consists of two layers separated by
a large distributed Josephson junction and therefore determines the coupling between
the qubits. The island has a critical current of Ic ≈ 40µA and gives a coupling of
M ≈ 10pH.

Important for this is accurate knowledge of both the kinetic inductance as well

as the critical currents in the specific lines involved.
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Chapter 6

Gradiometer qubit with trapped fluxoid

bias

A gradiometer type Josephson persistent current qubit is fabricated to reduce

the influence of external flux noise from far away from the qubit on the qubit bias

energy. In addition, qubit phase bias is obtained using a fluxoid trapped in a solid

superconducting loop is used. To demonstrate the viability of this approach a

simple sample without on-chip resistors and capacitors was fabricated and tested.

Spectroscopy measurements demonstrate flux biasing of the qubit works.
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6.1 Introduction

To operate qubits it is required to maintain coherence for a sufficient period of

time Dephasing times in the order of hundreds of 100ns have been established

in superconducting devices [1, 2, 3, 4, 5, 6] by operating in the degeneracy point

where the energy levels are, to first order, independent of flux or charge. Su-

perconducting quantum systems whit EJ >> Ec, like the Josephson persistent

current qubit, are especially sensitive to phase or flux fluctuations. Noise can be

caused by for example thermal fluctuations from resistors coupling to the control

lines and measurement circuit [7], by variations in the critical currents of the

junctions [8], charge noise [9, 10], and by magnetic field variations. One way to

reduce influence from magnetic field or flux noise is to use a gradiometer type

qubit. Measurements performed on a gradiometer type Josephson persistent cur-

rent qubit will be discussed. The main purpose of the gradiometer qubit is to

create a quantum system which is not limited to operation in the degeneracy

point by reducing influence of flux noise to a level where it is no longer a limiting

factor in qubit operations.

A gradiometer qubit can consists of a simple qubit loop with a twist in the

loop, making the current in half the loop flow in the opposite direction compared

to the current in the other part of the loop (figure 6.1a ). The total flux enclosed

by the loops will then cancel for flux noise generated at a long distance. Our

design of the gradiometer qubit as shown in figure 6.1b works the same as the

configuration with a physical twist. The persistent current splits in two circulat-

ing currents flowing in opposite direction. Any flux picked up by the left loop

will be counter acted by flux through the right loop since the persistent current

flows in the opposite direction there. Therefore, also this configuration acts as

a gradiometer. The attractive advantage of this is that trapped fluxoids can be

used to phase bias the system.

The Josephson persistent current qubit needs a stable phase bias for operation.

Since applying strong local magnetic fields is difficult, phase biasing of the circuit

via a trap loop in which a fluxoid is trapped can be used to apply a local phase

to a system [11]. For any system one needs local control lines for shifting the

operating point around the degeneracy point at Φ = 1
2
Φ0 which can introduce

severe decoherence and should therefore be carefully designed. However, since the

trapped fluxoid is used to bring the qubit to the degeneracy point only a small

magnetic shift is needed which allows weak coupling of the control line to the

qubit. The first configuration however needs a large coupling to the flux bias line

to apply the initial bias of Φ = 1
2
Φ0 causing severe decoherence via the control

circuit large. Due to the gradiometer configuration the signal produced by the
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	qb	qb Ip

I /2pI /2pIpIp

a b

Figure 6.1: Josephson persistent current qubit with a gradiometer configuration. Any
change in flux induced from a source at a large distance will influence the energy bias of
the qubit less then a non gradiometer configuration. This gradiometer configuration can
be obtained by adding a crossing in the qubit loop (a) or by making the qubit current flow
into two branches (b). The advantage of this second method is that trapped fluxoids can
be used to bias the system at a phase of π. Making a small physical crossing as shown in
(a) is hard using aluminium shadow evaporated junctions. Both methods require local
on-chip flux bias lines for operating the system around the degeneracy point

qubit should be read-out locally using an asymmetrical coupled squid.

Another advantage of the gradiometer flux qubit will become clear when more

then a few qubits will be fabricated on chip near each other all with control lines,

tunable couplings and read-out SQUIDS. One needs to avoid cross-talk in such

a complex system of qubits, SQUIDS, and current carrying lines, and make sure

interaction can be switched off almost completely. This will be much easier when

a gradiometer configuration is used.

In section 6.2 the influence of flux noise and an unstable flux bias will be

discussed. In section 6.3 the principles of the gradiometer Josephson persistent

current qubit will be explained. Experimental data shows that trapped fluxoid

biasing is achieved. Due to the lack of on-chip circuitry the effect of this on the

phase stability could not be investigated.

6.2 Dephasing due to an unstable flux bias

The energy level separation of the qubit can be tuned by applying a magnetic

flux to the qubit loop (chapter 2). When this flux bias is unstable the resonance

peaks are broadened due to the varying energy bias.
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Figure 6.2: The left panel shows a resonance of a non-gradiometer type qubit at an
energy splitting of f = 18.96GHz. To the right are measurements taken at a fixed
external flux bias point of the qubit on the slope of the resonance curve. One can
clearly see flux jumps on a time scale of minutes moving the energy bias around the
resonance, indicating flux jumps are present locally.

In figure 6.2 measurements are shown in which the magnetic field was tuned

to be on the slope of a resonance peak. Here the measured signal is highly

sensitive to the applied flux. One can see jumps at typical time scales of 10

minutes. The amplitude of the jumps are of the order of ∆Φ = 5 · 10−5Φ0,or

∼ 100MHz, giving an inhomogeneous dephasing time T ∗
2 = 1

πf
≈ 3ns . In order

to decrease the sensitivity to flux noise one can use a gradiometer configuration

so that flux jumps originated far away are -to first order- cancelled. For a line

width of approximately 100kHz, giving a dephasing time T ∗
2 of 3µs the variations

in flux bias of the qubit should be of the order of δΦ ≈ 5 · 10−8Φ0. For a typical

qubit loop of 5 by 5µm2 , a field stability of δB ≈ 4 · 10−12T is required. The

gradiometer can be used to gain a factor ∼ 100 in suppression of flux sensitivity

to fluctuations from long distance flux sources.
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Figure 6.3: The layout of the simple Josephson persistent current qubit (a) can be
mapped on a gradiometer type qubit with trapped fluxoid bias (b). Half of the qubit
current Iqb will flow clockwise, half will flow anti clockwise so the phase picked up by a
homogeneous external magnetic field is cancelled.

6.3 Gradiometer qubit with phase bias by a su-

perconducting trap loop

The gradiometer type qubit with trapped fluxoid bias is schematically shown in

figure 6.3b. The three junctions in the middle line form the Josephson potential

just as in the case of a single loop qubit.

For identical loops the persistent current of the qubit will divide equally be-

tween the two branches, half going right (Ip,right) and half going left (Ip,left). The

qubit should be phase biased around γqb ≈ π, where γqb is the sum of the phases

over the three qubit junctions, for the system to behave as a two level system.

To apply this necessary phase bias of γqb = π over the qubit junctions a trapped

fluxoid in the solid superconducting ring can be used [11]. The phase γtr (figure

6.4) is now the integral of the divergence of the phase along the superconducting

line.

γtr + 2π
Φext + Φself

Φ0
= 2πn (6.1)

where Φext is the external applied flux through the loop, and is the self produced

flux given by Φself = LgeoItr. With

γtr = 2π
Lkin

Φ0

Itr (6.2)
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	tr
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Figure 6.4: A solid superconducting loop can be used to trap fluxoids.. When cooled
down in a magnetic field there will be a current in the ring to sustain the phase difference
according to the number of fluxoids trapped in the loop.

the current in such a traploop is given by

Itr =
nΦ0 − Φext

Lkin + Lgeo
(6.3)

where n the fluxoid number trapped in the loop, and Φext the applied exter-

nal field. This persistent current in the traploop gives a stable phase bias to

superconducting devices like a squid or a Josephson persistent current qubit.

Returning to figure 6.3, the flux quantisation rules for the two loops are

γ1 + γqb + 2π
Φ1

Φ0
= 2πn1 (6.4)

γ2 − γqb + 2π
Φ2

Φ0
= 2πn2 (6.5)

By realising that eq 6.4+eq 6.5 = eq 6.2 it follows that n1 + n2 = n. The phases

over each part of the loop can be written as

γi = 2π
Lkin,iIi

Φ0
= 2π

Lkin,i

Φ0

nΦ0 − Φext

Lkin + Lgeo
(6.6)

flux quantisation is now:

Lkin,1 + Lgeo,1

Φ0

I1 + γqb + 2π
Φext,1

Φ0

= 2πn1 (6.7)
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Figure 6.5: Gradiometer persistent current qubit with on the left the SQUID detector
used for reading out the qubit. A separate line is needed to apply an asymmetric flux
bias for moving the operating point around the degeneracy region.

Lkin,2 + Lgeo,2

Φ0
I2 − γqb + 2π

Φext,2

Φ0
= 2πn2 (6.8)

From this the phase over the qubit can be written as

γqb =
1

2

(Lkin,1 + Lgeo,1)I1
Φ0

− 1

2

(Lkin,2 + Lgeo,2)I2
Φ0

−πΦ1 − Φ2

Φ0
+π(n1−n2) (6.9)

For the symmetric case where Lkin,1 = Lkin,2 ≡ Lkin and Lgeo,1 = Lgeo,2 ≡ Lgeo

the only term in the current that does not cancel is the persistent current of the

qubit Ip so this equation reduces to to

γqb = −πΦ1 − Φ2

Φ0
+ π(n1 − n2) − 2π

(Lkin + Lgeo)Iqb

Φ0
(6.10)

In this equation only the qubit current Iqb plays a role. The inductances of the

loops form the self inductance just as in the case of a single qubit. The stable

phase bias to the qubit is given by the phase of the bias-ring. With n1 + n2 = n

it is clear that for n ∈ [−3,−1, 1, 3] also n1 + n2 should be odd: For an odd

number of fluxoids trapped in the loop the phase bias of the qubit is given by

γqb = π(2k+1) with k ∈ N . By applying Φ1 �= Φ2 the operating point of the qubit
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Figure 6.6: Gradiometer qubit with two squids attached. The solid loop in the middle
is used for trapping fluxoids used for biasing the qubit around γqb = π. The extra ’H’-
shaped junction in the qubit branch is to make sure the qubit junctions are attached
to the same layer of the traploop. In this picture two squids are attached. However,
measurements have been performed on a gradiometer qubit with one squid attached since
the squids influenced each other.

can be shifted. This is done via an asymmetric bias line situated on one side of

the gradiometer loop as can be seen in figure 6.5. In a similar way the squid used

for detecting the qubit signal is asymmetrically attached to the gradiometer loop.

Both kinetic and geometric inductance attribute to the qubit-squid coupling M .

The squid picks up a part of the phase of the traploop [11]. The design is such

that for the qubit at f = 1
2
Φ0 the squid is operated at a sensitive point with

respect to the flux. A gradiometer qubit design with two attached squids can be

seen in figure 6.6. The hexagonal loop in the middle is used for trapping fluxoids

to bias the qubit junctions. Two squids are attached to let the current noise from

the measurement circuit couple into the qubits in a symmetric way. One voltage

line is visible in the middle of the trap loop. This can be used to read out the

signal of the squids independently. However, in a switching current measurement

using attached squids the switching of one squid forces the other to switch as

well.

6.4 Spectroscopy Measurements

Measurements have been performed on gradiometer qubit systems with trapped

fluxoid bias with both one or two squids attached. No spectroscopy measurements

were performed with this two squid setup so only measurements with one squid
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Figure 6.7: Squid switching current measurements versus the applied magnetic field
for different number of fluxoids n trapped in the traploop. The shift obtained by the
traploop when biasing the qubit also biases the SQUID to a sensitive point with respect
to flux. External applied flux can be used to shift this point to other places on the
SQUID switching current curve.

attached will be discussed. It will be shown that trapped fluxoids can be used to

bias the squid in a region where it is sensitive to the qubit signal and also bias the

qubit around its operating point of γ = π. No on-chip resistors or capacitances

were available, so the on-chip electrical environment was not well defined. This

strongly limits the coherence.

Flux trapping

The system is designed so that for an odd number of fluxoids trapped the squid

will be in a sensitive region with respect to the signal produced by the qubit. In

figure 6.7 the measured critical current is displayed for n = 0, n = −1 and n = 1

fluxoids trapped in the trap loop. This trapping can be done by switching the

SQUID to the finite voltage state and applying a current of ∼ 25µA. Heating

will cause the trap loop to become normal. By applying the right field for the



98 Chapter 6.Gradiomer qubit with trapped fluxoid bias

Figure 6.8: Spectroscopy peaks visible on one side of the qubit step. The resonance
shifts with magnetic field. A persistent current Ip = 410nA ± 40nA can be extracted
from the slope of the energy versus flux. More resonances are visible which do not
move with the frequency of the applied microwave radiation. These are attributed to
excitation of the qubit due to resonances in the squid environment.

wanted number of fluxoids and decreasing the bias current the loop cools down

and the fluxoid is trapped. The shift corresponds to an extra effective phase in

the SQUID due to the phase in the trap loop of Φshift = 0.23Φ0 as is seen in

figure 6.7. Due to the double layer structure of superconducting lines fabricated

with shadow evaporation (see chapter 5) the amount of phase from the trap loop

picked up by the squid is not simply proportional to the length of the line. The

exact phase distribution in this line determines the effective coupling of the squid

to the trap loop.
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Spectroscopy measurements

Spectroscopy measurements performed on the gradiometer qubit are shown in

figure 6.8. From the shift in resonance peak position with respect to flux a

persistent current of Ip = 410nA±45nA is obtained. Behaviour of the resonances

observed confirms the system behaves as a persistent current qubit. However,

spectroscopy transitions are only visible for frequencies in the range between ∼
6GHz and ∼ 9GHz, and there is a large uncertainty in the flux bias of the system,

making the error in the currents rather large. Clearly visible in the data are other

peaks which are attributed to a combination of qubit resonances and resonances

in the measurement circuit. No on-chip shunt capacitor or resistors were present

making the electrical environment rather undefined and unpredictable, and more

sensitive to noise from the measurement circuit. Any asymmetry in the traploop

will cause a deviation from the phase proportional to this asymmetry. From the

position of the spectroscopy peaks with respect to the asymmetric flux applied

it was deduced that an asymmetry in phase bias of 3 percent of γqb = π was

present.

Peak width versus power

To estimate the dephasing time T ∗
2 of the resonances under consideration the

peak width versus power is plotted in figure 6.9. For low powers the resonance

peaks start to reduce in amplitude and finally disappear. Measurements show

this happens at a minimal resonance width of Wfwhm ∼ 400MHz, indicating a

dephasing time in the order of T2 = 1ns.

The goal of obtaining an increased dephasing time could not be observed.

However, the behaviour of the resonances indicate the qubit is biased using a

trapped fluxoid in the trap loop and an asymmetric flux bias line can be used to

move around the operating point.

6.5 Conclusions

Measurements show a phase bias of a Josephson persistent current qubit has been

achieved by using a trapped fluxoid in a superconducting loop. The asymmetric

flux bias line can be used to move around the operating point. Measurements have

not shown an increase in the dephasing time of the qubit, indicating that flux noise

was not the limiting factor. The absence of a well defined and filtered electrical

on-chip environment made the measurement circuit and the flux bias circuit likely

sources of severe decoherence. These measurements show that gradiometer qubit
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Figure 6.9: Spectroscopy peaks for various powers. The peak disappears when the
power is lowered with a minimum observed peak width of the order of ∼ 400MHz.

can be operated with fluxoid bias, opening a way to build systems where the

influence of flux noise from sources away from the system is reduced.
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Summary

Single and coupled Josephson junction quantum bits

In this thesis measurements on single and coupled Josephson persistent cur-

rent qubits are presented. The Josephson persistent current qubit consists of a

superconducting loop intersected by three Josephson junctions. When half a flux

quantum is applied to the loop this system acts as a quantum two state sys-

tem. The two states are associated with a clock or anti clockwise current flowing

in the loop and can be measured using a SQUID magnetometer. The research

presented in this thesis aimed at achieving coupling between two Josephson per-

sistent current qubits and to show conditional gate operations in such a coupled

qubit system. Also it was tried to improve the coherence properties of a sin-

gle qubit by using a gradiometer type configuration to minimize influence from

fluxnoise which would cause a disturbance of the energy bias of the qubit system.

The basic principles of the Josephson persistent current qubit are discussed,

as well as design criteria to minimize decoherence due to the environment seen by

the squid or microwave lines. A SQUID magnetometer operated in the quantum

tunnelling regime is used for reading out this flux signal produced by either a

single or two coupled Josephson persistent current qubits.

Spectroscopy measurements have been performed on coupled qubit systems

mapping out the energy level structure of these systems. For two coupled qubits

the origin and magnitude of the coupling J is derived for coupling via the ge-

ometrical inductance between the qubits. Also it is shown that coupling via a

shared junction or a shared line acts the same as the geometrical coupling. Spec-

troscopy measurements show coupling for qubits which are mainly geometrical

coupled and spectroscopy measurements on an other sample show a coupling for

qubits coupled via a large shared Josephson junction. Using such a shared junc-

tion allows for the coupling to be designed within a large range. For the coupled

qubit system with coupling via a large junction spectroscopy measurements from

both the ground state to higher states as well as from the partially populated

first excited state to higher states have been performed and the level structure
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of this system is mapped out. The energy level structure is in good agreement

with the 4 level approximation for two coupled qubits. Coherent Rabi oscillations

between two states flipping either qubit of this system have been performed with

an oscillation decay time of up to ∼ 70ns. Also conditional spectroscopy has

been performed by first going coherently from the ground state to a higher state

and then incoherently pumping the system to other states.

Spectroscopy measurements on a gradiometer type Josephson persistent cur-

rent qubit show trapped fluxoid biasing can be used to create a phase bias of π

over the qubit junctions.

The results of this thesis show that coupling between Josephson persistent

current qubits can be achieved and designed within the wanted range. Superpo-

sitions between the ground state and higher states in such a coupled qubit system

have been created by performing Rabi oscillations. Also conditional spectroscopy

has been performed. These results indicate that full control of the two qubit four

dimensional Hilbert space is within reach. This forms a basis for future experi-

ments on entanglement of spatially separated qubits, each with separate readout.

Then this system can be used to investigate further the properties of quantum

mechanics and to investigate the principles of quantum computation.

Alexander ter Haar

December 2004



Samenvatting

Enkele en gekoppelde Josephson junctie quantum bits

In dit proefschift worden metingen aan enkele en gekoppelde quantum bits

gepresenteerd. De Josephson persisterende stroom qubit bestaat uit een su-

pergeleidende ring die op drie plaatsen onderbroken is door Josephson junc-

ties. Bij een magnetische flux van een halve fluxquantum door de ring gedraagt

het systeem zich als een quantum twee niveau systeem waarvan de toestanden

overeenkomen met een stroom links of rechtsom door de ring. Deze stroom wordt

gemeten door gebruik te maken van een SQUID magneetmeter. Het onderzoek

dat hier gepresenteerd is was gericht op het koppelen van twee Josephson quantum

bits. Ook is er onderzoek gedaan naar het reduceren van de gevoeligheid van het

systeem voor flux ruis door gebruik te maken van een gradiometer configuratie.

De basis principes van de Josephsen persisterende stroom qubit zijn behan-

deld, en ook ontwerp criteria om decoherentie vanuit de omgeving, gezien door de

SQUID of de microgolf lijn, te minimaliseren. Een SQUID in het quantum regime

wordt gebruikt om het signaal van een enkele of van de gekoppelde qubits uit te

lezen. Voor twee geometrisch gekoppelde qubits is de origine en de grootte van de

koppeling afgeleid, en het is aangetoond dat kinetische koppeling werkt volgens

hetzelfde principe. Door middel van spectroscopie metingen aan twee gekoppelde

qubits is het energie spectrum in kaart gebracht. De koppeling tussen de qubits

J is gemeten voor zowel een systeem waarin de qubits vooral geometrisch gekop-

peld waren, als voor een systeem met vooral kinetische koppeling via een gedeelde

Josephson junctie. Zo’n gedeelde Josephson junctie kan gebruikt worden om de

koppeling over een groot bereik te ontwerpen. Voor het sample met koppeling via

een gedeelde junctie is spectroscopie vanaf de grondtoestand en vanaf de eerste

aangeslagen toestand uitgevoerd en de structuur van de energie niveaus is zo in

kaart gebracht. Die structuur is in goede overeenkomst met het 4 niveau model

voor twee gekoppelde qubits. Coherente oscillaties tussen twee toestanden zijn

uitgevoerd. Ook is conditionele spectroscopy uitgevoerd door eerst coherent van

de grondtoestand naar de eerste aangeslagen toestand te gaan, en vervolgens

met een stralings puls een incoherent mengsel tussen de hogere toestanden te
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bewerkstelligen.

Spectroscopie aan een gradiometer qubit systeem heeft aangetoond dat een

ingevangen fluxoid gebruikt kan worden om een phase van π over de juncties aan

te leggen.

Dit proefschrift toont aan dat koppeling tussen Josephson persisterende stroom

qubits kan worden bewerkstelligd, en dat deze koppeling kan worden ontwor-

pen over een ruim interval. Coherente superposities tussen twee toestanden zijn

gemaakt in een gekoppeld qubit systeem door Rabi oscillaties tussen twee niveaus

uit te voeren. Ook conditionele spectroscopy is uitgevoerd. Deze resultaten

geven aan dat controle over de toestanden van twee gekoppelde flux qubits bin-

nen bereik is. Dit vormt de basis voor experimenten aan quantum mechanische

’verstriktheid’ (entanglement) tussen ruimtelijk gescheiden qubits, elk met een

eigen uitlees systeem. Dit systeem kan dan gebruikt worden om de eigenschap-

pen van quantum mechanica en de principes van een quantum computer verder

te onderzoeken.

Alexander ter Haar

December 2004
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